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In the paper a novel hybrid genetic differential evolution algorithm utilized
to solve constrained optimization problems. The suggested algorithm is
called hybrid genetic differential evolution algorithm for solving constrained
optimization problems. The objective of the suggested algorithm has to
mend the global search aptitude of DE algorithm by merging genetic linear

crossover with a DE algorithm to discover more solutions in search space and
to revoke tricking in local minima. To validate the general performance of
the differential evolution algorithm, it compared with 4 evolutionary based
algorithms on 8 benchmark functions. The experimental results show that
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Introduction

Evolutionary algorithms widely used to solve
many unconstrained optimization problems. EAs
are unconstrained search algorithms and lake a
technique to handle the constraints in the
constrained optimization problems (COPs). There
are different techniques to handle constraints in
EAs, these techniques classified by Michalewicz
as follows. Methods based on penalty functions,
methods based on the rejection of infeasible
solutions, methods based on repair algorithms,
methods based on specialized operators and
methods based on behavioral memory.

Differential evolutionary algorithm is one of the
most widely used evolutionary algorithms (EAs)
introduced by Stron and Price. Because of the
success of DE in solving unconstrained
optimization problems, it attracts many
researchers to apply it with their works to solve
constrained optimization problems (COPs). In this
paper, we proposed a new hybrid algorithm in
order to solve constrained optimization
problems. The proposed algorithm is called
hybrid genetic differential evolution algorithm for
solving constrained optimization problems
(HGDESCOP). The HGDESCOP algorithm starts

with an initial population consists of NP
individuals, the initial population is evaluated
using objective function. At each generations, the
new offspring created by applying the DE
mutation. In order to increase the global search
behaviour of the proposed algorithm and explore
wide area of the search space, a genetic
algorithm linear crossover operator is applied. In
the last stage of the algorithm, the greedy
selection is applied in order to accept or reject
the trail solutions. These operations are repeated
until the termination criteria satisfied.

The main objective of this paper is to construct
an efficient algorithm which seeks optimal or
near-optimal solutions of a given objective
function for constrained problems by combining
the genetic linear crossover with a DE algorithm
to explore more solutions in the search space and
to avoid trapping in local minima.

The reminder of this paper is organized as fellow.
The problem definition and an overview of
genetic algorithm and differential evolution are
given in Section Il. In Section lll, we explain the
proposed algorithm in detail. The numerical
experimental results are presented in Section IV.
Finally, the conclusion of the paper is presented
in Section V.
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PROBLEM FORMULATION

In the following section and subsections, we give
an overview of the constraint optimization
problem and we high light the penalty function
technique, which are used to convert the
constrained optimization problems to
unconstrained optimization problems. Finally, we
present the standard genetic algorithm and
deferential evolutionary algorithm.

A. Constrained optimization problematic

A general form of a constrained optimization
is defined as follows:

Minimize f(x), x = (xt1, x2, -, % T, (1)
Subject to
gix)20i=1,---,m
h(x)=0,j=1,---,I
XEXS

Where f (x) is the objective function, x is the
vector of n variables, gi (x) < 0 are inequality
constraints, hj (x) = 0 are equality constraints, xI,
Xu are variables bounds. In this paper, we used
the penalty function technique to solve
constrained optimization problems. The following
subsection gives more details about the penalty
function technique.

1) The Penalty function method: The penalty
function technique is used to transform the
constrained optimization problems to
unconstrained optimization problem by
penalizing the constraints and forming a new
objective function as follow:

L € feashle regon
= (X)+penallx) ¢ feashle regon,
Where,
01ifno constait s vilated

D= e,

There are two kinds of points in the search space
of the constrained optimization problems (COP),
feasible points which satisfy all constraints and
unfeasible points which violate at least one of the
constraints. At the feasible points, the penalty

function value is equal the value of objective
function, but at the infeasible points the penalty
function value is equal to a high value as shown in
Equation 2. In this paper, a non stationary penalty
function has been used, which the values of the
penalty function are dynamically changed during
the search process. A general form of the penalty
function as defined in [21] as follows:

F (x) = (x) + h(k)H(x), x € SCRn, (3)

Where f (x) is the objective function, h(k) is a non
stationary  (dynamically modified) penalty
function, k is the current iteration number and
H(x) is a penalty factor, which is calculated as
follows:

Where qi (x) = max (0, gi (x)),i=1,..., m,giare
the constrains of the problem, qi is a relative
violated function of the constraints, 8(qi (x)) is
the power of the penalty function, the values of
the functions h(.), 6(.)and y(.) are problem
dependant. We applied the same values, which
are reported in [21].

The following values are used for the penalty function:

Tif gifx) <1,

VG0D= 2 ohenyise.

\Where the assignment function was

(010

0 ifg(x)<0.001,

nop 0001 <qi(x)<0.1,
T0.12qi(x)<1,

0100 othenwise.

1300
And the penalty value hit) =t t.

()=

B. Genetic algorithm overview
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Genetic algorithm (GA) was introduced by
Holland [8]. The basic principles of GA are
inspired from the principles of life which were
first described by Darwin [4]. GA starts with a
number of individuals (chromosomes) which form
a population. After randomly creating of the
population, the initial population is evaluated
using fitness function. The selection operator is
starting to select highly fit individuals with high
fitness function score to create new generation.
Many type of selection have been developed like
roulette wheel selection, tournament selection
and rank selection [12]. The selected individuals
are going to matting pool to generate offspring
by applying crossover and mutation. Crossover
operator is applied to the individuals in the
mating pool to produces two new offspring from
two parents by exchanging substrings. The most
common crossover operators are one point
crossover [8], two point crossover [12], and
uniform crossover [12]. The parents are selected
randomly in crossover operators by assign a
random number to each parent, the parent with
random number lower than or equal the
probability of crossover ration Pc is always
selected. Mutation operators are important for
local search and to avoid premature
convergence. The probability of mutation pm
must be selected to be at a low level otherwise
mutation would randomly change too many
alleles and the new individual would have
nothing in common with its parents. The new
offspring is evaluated using fitness function,
these operations are repeated until termination
criteria stratified, for example number of
iterations. The main structure of genetic
algorithm is presented in Algorithm 1

Algorithm 1 genetic algorithm structure

1 Set the generation counter t := 0.

2" Generate an initial population P o randomly.

3 Evaluate the fitness function of all individuals in P 0.

5. fepeat

g oett=t+ 1. { Generation counter increasing}.
Select an intermediate population P tfrom Pt-1.

{Selection operator}.
. Associate a random number r from (0, 1) with each row
- inPt.
if r < pcthen
8 Apply crossover operator to all selected pairs of Pt.
1%{ Update P1.

1. end if{Crossover operator}.

12 Associate a random number r1 from (0, 1) with each
gene in each individual in P t.

if r1 < pmthen

i Mutate the gene by generating a new random value

" for the selected gene with its domain.

Update Pt.
endif
}g; {Mutation operator}.

Evaluate the fithess function of all individuals in P+.
until Termination criteria satisfied.

1) Liner crossover operator: HGDESCOP uses a
linear crossover [20] in order to generate a new
offspring to substitute their parents in the

population. The main steps of the linear

crossover are shown in Procedure 1.

Procedure 1: Linear Crossover (pl1, p2)

1. Generate three offspring ¢1=(¢1, ..., ¢1), C2=1D
(c2,...,c2)andc3=(c3,...,c3)from parentsiiop
p1=(p1,...,p1)andp2=(p2, ..., pz), whereiipp

cli = 111 ’
PP,
22
3112
P=p.=
e 282
1132
=-ptp,
i=1,...,D. 2

Page 1 9



Prof.(Dr.)Vijay Kumar, et al., International Journal of Innovative Computer Science & Engineering

2. Choose the two most promising offspring of
the three to substitute their parents in the
population.
3. Return.
C. Differential evolution algorithm Differential
evolution algorithm (DE) proposed by Stron and
Price in 1997 [17]. In DE, the initial population
consists of number of individuals, which is called
a population size N P . Each individual in the
population size is a vector consists of D
dimensional variables and can be defined as
follows:
0 =k, xp® =12, NP,

(5)
Where G is a generation number, D is a problem
dimensional number and NP is a population size.
DE employs mutation and crossover operators in
order to generate a trail vectors, then the
selection operator starts to select the individuals
in new generation G+1. The overall process is
presented in details as follows:
1) Mutation operator: Each vector xi in the
population size creates a trail mutant vector vi as
follows.

DE applied different strategies to generate a
mutant vector as fellows

@ (©
DEfrandi1: i =xi+ F - (Xt o)
. © (G)
DE/best/1: Vi =Xbest+ F - (Xri+ X2)
DE/currenttobest/1 : f) = xﬁ-) F - (Xbest— %)
+F - ()(n‘ )(rz}
G -, @l
DEbest2: = f (401~ Xe)
P - x )(10)
DEfrand2: Vi =X FF - (k2= o)

+F (XM' Xrs )(1 1)

where rd , d =1, 2,..., 5 represent random
integer indexes, rd € [1, N P ] and they are
different from i. F is a mutation (G) scale factor, F
€ [0, 2]. xbest is the best vector in the population
in the current generation G.

2) Crossover operator: A crossover operator
starts after mutation in order to generate a trail

,._.‘
~J
-

(

8

)

©)

vector according to target vector xi and mutant
vector vi as follows:

vij, if rand(0, 1) £ CR or | = jrand
xij, otherwise (12)

Where CR is a crossover factor, CR

is a random integer and jrand € [0, 1]

3) Selection operator: The DE algorithm applied
greedy selection, selects between the trails and
targets vectors. The selected individual (solution)
is the best vector with the better fitness value.
The description of the selection operator is
presented as fellows

Uij=

ulef (u) < £ (6 ©

Xi ,otherwise

(G+1)
Xi

L (13)

The main steps of DE algorithm are presented in
Algorithm 2

Algorithm 2 The
evolution algorithm

structure of differential

1: Set the generation counter G :=0.
2: Set the initial value of F and CR.
if (Generate an initial population P o randomly.
5. Evaluate the fitness function of all individuals in P o.
g repeat
7. Set G =G+ 1. {Generation counter increasingy.
B fori=0;i<NP;i++do
Select random indexes ri, rz, r2, whereri=rz=
Rk (GHGHGHE)
g vi= ¥+ F o (e — xe). {Mutation oper-
ator}.
- j=rand(1, D)
11- for(k=0;k<D;k+ +)do
12- if (rand(0, 1) = CR or k = then
(G)NG)
13- uk = vik {Crossover operator}
14: else
15: (G)NG)
16: Uik = Xk
1T end if
18 end for
(GHG)
if (f(ui) =1 (x)) then
14 iG+1)(53)
g?; w= ui {Greedy selection}.
22: else
73 _ {G+1)(5)
24: =X
end if
end for
until Termination critena satisfied.
HGDESCOP ALGORITHM

HGDESCOP algorithm starts by setting the
parameter values. In HGDESCOP, the initial
population is generated randomly, which consists
of NP individuals as shown in Equation 5. Each
individual in the population is evaluated by using

e [0,

[<5)

oo

]
(=W
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the objective function. At each generation (G),
each individual in the population is updated by
applying the DE mutation operator by selecting a
random three indexes r1,r2,r3, whererl=r2=
r3 =i as shown in Equations 6, 7. After updating
the individual in the population, a random
number r from (0, 1) is associated with each
individual in the population by applying the
genetic algorithm linear crossover operator as
shown in Procedure 1. The greedy selection
operator is starting to select the new individuals
to form the new population in next generation as
shown in Equation 13. These operations are
repeated until termination criterion satisfied,
which is the number of iterations in our
algorithm.

Algorithm 3 The proposed HGDESCOP algorithm

1. Set the generation counter G == 0.
2 Set the initial value of F | peand NP.
if Generate an initial population P o randomly.
= Evaluate the fitness function of all individuals in P o.
g repeat
7. SetG=0G+ 1. {Generation counter increasing}.
B for (i=0;i<NP;i++)do
Select random indexes r, rz, r2, whereri=rz2=
" IZGZIIIZG:-:G:-:G]
g vi= ¥+ F % [z — % ) {DE mutation
operator}.
. end _for _ _
11+ for(j=0;] < NP; j++) do
1z Associate a random number r from (0, 1) with each
iEviin P iG).
if r < Pethen
13 G)
14: Apply Procedure 1 to all selected pairs of viin
P (s). {GA linear crossover operator}.
G)
15: Update ui.
16: end if
170 end for
18 for (k= 0; k < NP; k++) do
(GNG)
14; if {f (uk )= f(xx)) then
{G+1)(G)
%E’f x= uk {Greedy selection}.
55 else
75 {G+1)(G)
24: Xk= Xk
25 end if
26:  end for
Update P i)

RESULTS OF NUMERICAL EXPERIMENTS

The general performance of the proposed
HGDESCOP algorithm is tested wusing 13
benchmark function G1 - G13, which are

reported in details in [5], [7], [13]. These
functions are listed in Table | as follows.

TABLE |: Constrained henchmark functions.

F unction D  Type of function Optimal

(G 12 quadratic -13.000
G2 19 nonlinear -0.705619
G3 11 polynomial -1.1200

G4 6  quadratic -20465 539
Gs 5 cubic 4998.778
Ge 3 cubic -6755.814
G7 g9 quadratic 22 662

Gs 3 nonlinear -0.084558

TABLE II: HGDESCOP parameter settings.

Parameters  Definitions Values
NP Population size 29

pe Crossover probability 071

F Mutation scale factor 06

M axitr Maximum number of iterations 1000

A. Parameter settings

The parameters used by HGDESCOP and their
values are summarized in Table Il. These values
are either based on the common setting in the
literature or determined through our preliminary
numerical experiments.

B. Performance analysis

In order to test the general performance of the
proposed HGDESCOP algorithm, we applied it
with 13 benchmark functions G1 - G13 and the
results are reported in Table IlI.

Also, six functions have been plotted as shown in
Figure 1.

1) The general performance of the HGDESCOP
algorithm:

The best, mean, worst and standard deviation
values are averaged over 30 runs and reported in
Table Ill. We can observe from the results in
Table Ill, that HGDESCOP could obtain the
optimal solution or very near to optimal solution
for all functions G1 - G12 for all 30 runs, However
HGDESCOP could obtain the optimal solution
with function G13 for 9 out of 30 runs. Also in
Figure 1, we can observe that the function values
are rapidly decreasing as the number of function
generations increases.
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We can conclude from Table Ill and Figure 1, that
HGDE- SCOP is an efficient algorithm and it can
obtain the optimal or near optimal solution with
only few number of iterations.

C. HGDESCOP and other algorithms

In order to evaluate the performance of
HGDESCOP algorithm, we compare it with four
evolutionary based algorithms all results are
reported in Table IV, and the results of the other
algorithms are taken from their original papers.
The four algorithms are listed as follows.

Homomorphous Mappings (HM) [9]

This algorithm, incorporates a homomorphous
mapping between n-dimensional cube and a
feasible search

space.
e Stochastic Ranking (SR) [16]

This algorithm introduces a new method to
balance objective and penalty functions
stochastically, (stochastic ranking), and presents a
new view on penalty function methods in terms
of the dominance of penalty and objective
functions.

Adaptive Segregational Constraint Handling EA
(AS- CHEA) [6]

This algorithm is called ASCHEA and it is used
after extending the penalty function and
introducing niching techniques with adaptive
radius to handel multimodel functions. The main
idea of the algorithm is to start for each equality
with a large feasible

TABLE Ill: Experimental results of HGDESCOP for G1— Gs

F unction optimal best mean worst std
G -15.000 -15.000 -T5.000 -15.000 0. Oe+00
Gz -0.803619 -0.8036187 -0.7993549 -0.7861574 0.0062361
Ga -1.000 -1.0005001 -1.0005000 -1.0004992 2.7368237e—o7
Ga -30665.539 -30665.538 -30665.538 -30665.538 0.0e+00
Gs 5126.498 5126.496858 5126.496728 5126.49671 4.5552e-0s
Ge -6961.814 -6961.813875 -6961.813875 -6961.813875 1.9173e-12
G7 24 306 24306209 24306209 24 306209 4. T706924e-12
Ga -0.095825 -0.095825 -0.095825 -0.095825 1.223905e-17
Ay
M —

mrijay byl

W amstias N abawe

Fuermnen b by
i

| et o alie
.

(1 s e L i e [ . [T wa i

Fig. 1: The general performance of HGDESCOP algonthm.
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Domain and to reduce it progressively in order to
bring it as close as possible to null measure
domain.

e Simple Multimembered Evolution Strategy
(SMES)

[14].

This algorithm is based on a multimembered ES
with a feasibility comparison mechanism.

1) Comparison between HM, SR, ASCHEA, SMES
and

HGDESCOP: The best, mean, worst results of the
five comparative algorithms are averaged over 30
runs and reported in Table IV. The evaluation
function values for HM, SR, ASCHEA and SMES
algorithms are 1,400,000, 350,000, 1,500,000 and
250,000 respectively. However the maximum
evaluation function value for HGDESCOP algo-

rithm is 120,000. We can observe from Table 1V,
that HGDE- SCOP results are better than the
other algorithms for all functions G1 - G12 except
the last function G13. In term of evaluation
function values, it is clear that HGDESCOP is
faster than the other algorithms.

CONCLUSION

In the paper the proposed algorithm (HGDESCOP)
combines the differential evolution algorithm anv
d the genetic linear crossover operator to
improve the investigation ability of the DE
algorithm and avoid trapping in local minima. To
validate efficiency of proposed algorithm, it
compared with 4 Evolutionary based algorithm
on 8 benchmark functions. All results depict that
HGDESCOP  algorithm is  best algorithm.

TABLE IV: Expenmental results of HGDESCOP and other EA-based algonthms for problems G1- Ge

F unction opfimal HM

G -14.000 Bact -13.7064
-14.000 Mean  -137082
-14.000 Worst  -136184

Gz 0702618 Bact 0680453
-0.703618 Mean  0.686T1
0703818 Worst  08B118

Ga -1.000 Best 0.y
-1.000 Mean  0.83EQ
-1.000 Worst 08378

Ga -ZEGGR A Best -30864.5
JUEEREM Mean 308553
SZREEE 53 Worst  -308450

3= 4076 408 Bast
4076 408 Wean
4076 488 Worst

(3 -6761.514 Best 7521
-f761.514 Mean  -G1428
A761.814  Worst  -53730

Gr 24308 Bact M 620
24.308 Mean 24526
24.308 Worst 26,080

3s 0.035825 Bect 0. 0858250
0.095825 Mean  0.0821588
0.035825 Worst 00281438

%R ASCHEA  SMES HGDESCOP
4 44 .14 14

14 1384 -1 14

14 NA. 14 14

078515 0785 0703808 27830187
0TS 0% 08N 177848
0631288 NA D861322 D T681574
1.000 100 1001033 1.000500
1.000 Deeeee 1000838 1.0005000
1.000 NA. 1.000478 1.0004882
0065539 -G06BS5  -0EASNDR2 309853
A06E55M  06EE5  -0EEAAINNE2  -306EA5N
A0E55H  NA 30665530082 30065539
520407 51285 626500800 5120406728
SI2B881  SM165 574402301 5229406728
542472 NA 530460092 502840071
£801514  GOG1B1  -B3B1ZIBE5 6761817
S0 GRG1B1  -0881.2830B4 670181373
£260262  NA 0801481834 6761813875
24307 M3 MG 2430600
4374 MBS D44TAE 24306008
842 NA M40 24306200
Q09525  00BSE2  0.065828 D.095625
009525  0.0BSE2  0.065820 0095625
002525 NA 0085828 D.005625
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And achieve the global minima or near global
minima earlier than other algorithms. Results also
depicts that accuracy, reliability using
(HGDESCOP) is much better than defined
methods
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