
ISSN: 2393-8528

 Contents lists available at www.ijicse.in

International Journal of Innovative Computer Science & Engineering

Volume 2 Issue 6; November-December-2015; Page No. 11-16

Pa
ge

11

Development of high Throughput Architecture of Keccak Hash Function for Cryptography on FPGA

1 Perika Kalanwesh, 2 Thrived Dharbhashayanam
1Student at Sri Indu College of Engineering and Technology, Hyderabad, India.

2 Design Engineer at Simpli5NG Semiconductor, Hyderabad, India

ARTICLE INFO ABSTRACT

Received: 11 Oct. 2015
Accepted 05 Dec. 2015

Corresponding Author:

Perika Kalanwesh

Student at Sri Indu College of
Engineering and Technology,
Hyderabad, India

 Security has become a very demanding parameter in today's world of speed
communication. It plays an important role in the network and
communication fields where cryptographic processes are involved. These
processes involve hash function generation which is a one-way encryption
code used for security of data. The main examples include digital signatures,
MAC (message authentication codes) and in smart cards. Keccak, the SHA-3
(secure hash algorithm) has been discussed in this paper which consists of
padding and permutation module. This is a one way encryption process. High
level of parallelism is exhibited by this algorithm. This has been implemented
on FPGA. The implementation process is very fast and effective. The
algorithm aims at increasing the throughput and reducing the area.
Index Terms- Cryptography, encryption, FPGA, hash function, permutation,
security.

© IJICSE, All Right Reserved.

Introduction

Need for security:

Information technology has become the backbone of
modern society, which makes data security an
important aspect of research. Now-a-days almost all the
confidential facts about the financial status, products,
research, customers or employees are stored and
handled on computers, or transferred to other devices
through an accessible physical medium. Information
needs to be shared in such a format, which cannot be
exploited in a feasible amount of time by any adversary
without the knowledge of the key parameters used to
encrypt the information.

Now-a-days, cryptography has been strongly
corroborated in information science using the statistical
information theory and number theory [1]. With the
emergence of the Internet of Things (IoT) applications,
research with focus on robust yet simple crypto-systems
have gained importance [2]. The development of
internet and multimedia contents like audio, video has
caused a tremendous increase in the security
requirement. To avoid easy purchase of any content via
net, or to avoid problems like violation of ownership
and illegal distribution, cryptography technique is used.
This includes the hash function which is the key of
cryptanalysis [3].

SHA-3 (Secure hash algorithm) is the hash algorithm
used by NIST. Out the five hash functions competed by
NIST, KECCAK was chosen and standardized as the SHA-
3 algorithm by NIST. The total internal architecture of
sha-3 using Keccak hash function is the 512 bit
encryption is carried out. The common algorithms used
for security applications were Secure Hash Algorithms;
SHA-l and SHA-2.Due to some drawbacks of these
algorithms, National Institute of Standards and
Technology (NIST) announced a competition on 2nd
November, 2007 for the creation of a new
cryptographic hash function that would be entitled as
SHA-3 family

The competition underwent through three rounds. NIST
initially accepted sixty-four submissions by 3151
October, 2008, out of which fifty-one advanced to the
initial round in December, 2008. The entries reduced to
fourteen in number in the second round in July, 2009.
The third round resulted in five final candidates to
compete for the SHA-3 title [4]. The finalist SHA-3
candidates selected were BLAKE, Grostl, JH, Keccak, and
Skein. The competition ended in October 2012 with
Keccak as the winning candidate to be called as SHA-
3.Keccak has been selected based on the evaluation
Criterions of security, performance and flexibility [5].

High speed implementations have become a need as
these algorithms are widely used. Software based
implementations may not perform well as on heavily

http://www.ijicse.in/

 Perika Kalanwesh / International Journal of Innovative Computer Science & Engineering

Pa
ge

12

loaded servers. So the demand for high implementation
exists. A cryptographic hash function must be sensitive
to the smallest change caused in input data. It should
result a large difference in output for that small change
[6]. The input message may be given in the form of
video, audio or text message [7].

Objective:-

Security has become a very demanding parameter in
today's world of speed communication. It plays an
important role in the network and communication fields
where cryptographic processes are involved. In an effort
to increase the speed and decrease the delay via
pipelining it is proposed to keccak Hash Function
algorithm with pipelining. These processes involve hash
function generation which is a one-way encryption code
used for security of data. Keccak, the SHA-3 (secure
hash algorithm) consists of padding and permutation
module. The implementation process is very fast and
effective. The main examples include digital signatures,
MAC (message authentication codes) and in smart
cards. Simulation will be done to verify the functionality
and synthesis will be done to get the NETLIST. The
Simulation and synthesis is done using Xilinx ISE 14.7
functional simulator from Xilinx.

IMPLEMENTATION OF KECCAK HASH FUNCTION FOR
CRYPTOGRAPHY

This chapter describes the brief overview of keccak
cryptographic hash algorithm that has been developed
with the goal to enhance its performances in terms of
power consumption and area. It is become the default
choice to ensure the information integrity in numerous
applications. KECCAK is a family of sponge function.
The sponge function is a generalization of the concept
of cryptographic hash function with infinite output and
can perform quasi all symmetric cryptographic
functions, from hashing to pseudo-random number
generation to authenticated encryption.

Hash Technology:-

The sponge construction is a simple iterated
construction for building a function f with variable-
length input and arbitrary output length based on a
fixed-length transformation or permutation operating
on a fixed number b of bits. Here b is called the width.

Figure 1: Sponge Function

The sponge construction builds a function SPONGE [f ,
pad, r] using a fixed-length transformation or
permutation f , a sponge-compliant padding rule “pad”
and a parameter bit-rate r. A finite-length output can be
obtained by truncating it to its ℓ firstbits. This instance
of the sponge construction is called sponge function
[9].The sponge construction operates on a state of b = r
+ c bits. The sum r+c determine the width of the
permutation used in the sponge construction and are
restricted to values in {25, 50, 100, 200, 400, 800, 1600}.

The sponge construction process contains:

The Absorbing phase: The first input block of length r is
xored with r bits of the state. The transform function is
applied to the state results. Like the previous, the next
block is addition modulo 2 with the first results. This
continues until all this input is processed.

The Squeezing phase: the outputs contain the first r
blocks. They are returned from this state and the
transformations are continued until all the blocks make
for the output length desired are obtained.

The sponge construction is applied to KECCAK-f, so we
applied the padding to the message input for obtaining
the KECCAK-f [r,c]. With c is capacity and r is bitrate. All
the operations on the indices are done modulo 5. A
signify the complete permutation state array, and A[x,y]
show a particular lane in that state.

Implementation of Keccak Hash Function Algorithm:

The Keccak SHA-3 algorithm justifies the cryptanalysis
importance. The variable input is converted to fixed one
which the help of hash function. The output obtained is
mainly referred as the hash digest. Keccak core consists
of two modules i.e. padding and permutation.

 Input

In padding module the input is padded to the length
equivalent to i.e. the bit rate. Here, the padded output
shows the result of 576 bits [10]. The input is of 512
bits, which are processed at samples of 64 bits each, for
8 times each. These 64 bits are zero padded to 576 bits
output. A buffer is used by the padding module to
arrange the input bits to 576. When buffer is full, the
permutation module starts the calculations, the buffer
is cleared and the padding module waits for the next
input

Padder module:

The padder module consists of RegA, shifter, 2:1 mux,
576-bit buffer as shown in Fig3.3.From the given

 Perika Kalanwesh / International Journal of Innovative Computer Science & Engineering

Pa
ge

13

message, first 64 bits of data is temporarily stored in
Reg_A and data is forwarded to shifter. If the control
signal In_ready is high, then it indicates that the 64
input bits are ready and if the control signal In_ready is
low, then it indicates that all blocks of message are
consumed. The shifter will left shift the data by 64 times
and then forwarded to buffer. The buffer is of 576-bit
wide, the new 64 bits of data is consumed only when
the buffer is not full. In the second round, the data in
the buffer is left shifted by 64-bits and get concatenated
with new 64 input bits. The process continues until the
576-bit buffer is full and the padder output is forwarded
to permutation module. The next data blocks are
padded, if the padder module receives the
acknowledgement signal ackn from permutation
module.512 bits

Figure 3: Padding module

Permutation module:

Permutation module as depicted in Fig. 3.4, gives an
output of 1600 bits. Here, the XOR-ing is done between
the output of padding module and the input given, and
is further processed. This process continues until n
output bits are produced. Two rounds are performed
per clock cycle. Multi -rate padding is used by KECCAK.
For a given input, a single 1 bit is appended and then
minimum number of 0 bits are appended which are
followed by a single 1 bit. This results in the output
length to be a multiple of 576. Pi is the ith block of P[12]
.

Figure 4: Permutation module

The permutation module performs 2 main functions: 1)
f-permutation and 2) Truncation. For the padded 576
bits of data remaining 1024 zeroes will be added such
that r+c=1600. The 1600 bits are arranged as 5x5 state
arrays with 64 bit word length. If the control signal

First_round is high then the padded data will be applied
for transformation block and immediately the control
signal First_round is disabled, such that no more
padded data are allowed. As and when the padded data
is consumed by permutation module an
acknowledgement signal Ackn will be sent to padder
module to pad next block of data.

Permutation modules. It also explains about the five
operations (theta, pie, rho, chi and iota) in the
permutation module.

IMPLEMENTATION OF PIPELINED KECCAKHASH-
FUNCTION FOR CRYPTOGRAPHY

Introduction:

This chapter describes the brief overview of keccak
cryptographic hash algorithm with pipelining that has
been developed with the goal to enhance its
performances in terms of frequency, speed and to
decrease the delay. It also gives a brief description
about pipelining working and how it will be used to
decrease the delay and increase the frequency.

Implementation of Keccak hash function using
pipelining:

The pipeline is a set of data processing elements
connected in series, so that the output of one element
is the input of the next one. The elements of a pipeline
are often executed in parallel or in time -sliced fashion;
in that case, some amount of buffer storage is often
inserted between elements. A common technique for
increasing the throughput of electronic circuits is that of
pipelining. Pipelining consists of breaking long
combinatorial paths by introducing clocked memories;
this has the effect of dividing the circuit into sections, in
which calculations are run independently. The output of
a pipeline section becomes the input of the next one at
each clock cycle; while generally preserving the global
latency, pipelining increases the throughput of a circuit
because several instances of the problem are injected at
each clock cycle and are processed independently inside
each of the sections. The clock pulse is reduced as a
result of the breaking of the combinatorial path, thus
allowing higher clock frequencies to be used.

In this context, the algorithm keccak has characteristics
that enable the use of pipelining as a solution, since
there is a data dependency only of the first level, at
which data processing elements connected in series.
The data dependency of the first level allow the pipeline
stays full until the end of execution, eliminating the
hazards of the structural type of data and control
architectures commonly found in pipeline
implementations. However there is the initial cost of
four cycles for total completion of all stages of the
pipeline and four cycles to empty the same final stages.
Pipelining technique is implemented in the permutation

 Perika Kalanwesh / International Journal of Innovative Computer Science & Engineering

Pa
ge

14

module of the keccak hash function. For the pipeline
technique, we inserted two registers in the round
transformation: the first register is inserted between
the Pi operation and Chi operation, so as to divide the
critical path in almost the half. The second register is
implemented at the end of the KECCAK round.should be
noted that adding two registers between in
combinational path results increasing the maximal
frequency.

Figure 8: Proposed KECCAK round pipelined

architecture

In the first round the pipeline is filled with the original
blocks of data and after this round is the processed
blocks are reused in the new round. At each stage of the
pipeline is necessary to create a buffer capable of
storing the information processed in the previous
iteration. This buffer stores the state of partial array
processed in the previous cycle. In the pipeline
architecture are operated simultaneously 4 different
data blocks. As can be seen in figure, the first data block
is processed in one cycle [T| 1 | 0] this ends in the
fourth round, Cycle 4 [I | 1 | 0]. The application of the
proposed methodology allows increasing the data
processing speed and decreasing the number of clock
cycles.

Figure 10: pipeline stages demonstration

Summary:

This chapter explains about the keccak hash function
with pipelining. The registers are used for implementing
pipelining operation. The entire process of pipelining
between the rounds in the permutation module is
explained.

RESULTS
 Simulation Results
The test bench is developed in order to test the
modeled design. This developed test bench will
automatically force the inputs and will make the
operations of algorithm to perform.

Figure11: HDL simulation result of padding module

The core of the Keccak algorithm is the permutation
function which is repeatedly applied to a fixed-length
state of b = r + c bits, where r and c are bit rate and
capacity of the algorithm. Higher values of r improve
the speed whereas higher values of c correspond to
higher security level. Permutation module with initially
576 bit data is to XORed with the default value in the
register and fed to the mux. The mux generates the
output based on the round control pin. This pin goes
low if the round value is 23. After the completion of the
total 24 rounds we get 1600 bits output in the
permutation module.

Figure 12: HDL simulation result of permutation

module

Figure 13: HDL simulation result of keccak hash

function
After completion of keccak hash function the Pipelining
technique is implemented in the permutation module
of the keccak hash function. For the pipeline technique,
we inserted two registers in the round transformation:
the first register is inserted between the Pi operation
and Chi operation, so as to divide the critical path in

 Perika Kalanwesh / International Journal of Innovative Computer Science & Engineering

Pa
ge

15

almost the half. The second register is implemented at
the end of the KECCAKround.

Figure 5.4: Figure14.HDL simulation result of

permutation module with pipelining

In figure 5.4 simulation result of permutation module
with pipelining is presented. In this input is given as 512
bits from the padder module and then remaining bits
are added i.e. from the register and total five operations
are performed in one round and total we have 24
rounds, after 24 rounds the output will be taken. In
figure 5.5 simulation result of top module keccak hash
function with pipelining is presented.

Figure 15: HDL simulation result of keccak hash

function with pipelining

Synthesis results:
The developed pipelined keccak hash function is
simulated and verified their functionality. Once the
functional verification is done, the RTL model is taken to
the synthesis process using the Xilinx ISE tool. In
synthesis process, the RTL model will be converted to
the gate level net list mapped to a specific technology
library. The design of pipelined keccak hash function is
synthesized and its results were analyzed as follows.

Table 4: Logic utilization of keccak hash function

Logic Utilization Used Available Utilization

Number of Slice LUTs 52800 712000 7%

Number of fully used
LUT-FF pairs 0 52800 0%

Number of bonded
IOBs 2052 1100 186%

The Device utilization summary of the keccak hash
function without pipelining is shown below.
Device utilization summary:

Selected Device: 7vx1140tflg1930-2
Slice Logic Utilization:
 Number of Slice LUTs: 52800 out of 712000 7%
 Number used as Logic: 52800 out of 712000 7%
Slice Logic Distribution:
 Number of LUT Flip Flop pairs used: 52800
 Number with an unused Flip Flop: 52800 out of 52800
100%
 Number with an unused LUT: 0 out of 52800 0%
 Number of fully used LUT-FF pairs: 0 out of 52800 0%
 IO Utilization:
 Number of IOs: 2052
 Number of bonded IOBs: 2052 out of 1100 186% (*)
It is the timing summary of the keccak hash function
without pipelining.
Timing Summary:
Speed Grade: -2 Minimum period: No path found
Minimum input arrival time before clock: No path
found
Maximum output required time after clock: No path
found
Maximum combinational path delay: 53.559ns
The Logic Utilization of keccak hash function with
pipelining is shown in the below table
Selected Device: 7vx1140tflg1930-2

Table 5: Logic utilization of keccak hash function with
pipelining

Logic Utilization Used Available Utilization

Number of Slice
Registers 34045 1424000 2%

Number of Slice LUTs 52609 712000 7%

Number of fully used
LUT-FF pairs 0 86650 0%

Number of bonded
IOBs 2054 1100 186%

Number of
BUFG/BUFGCTRLs 2 128 1%

Macro Statistics
Register: 34045
Flip-Flops: 34045
Slice Logic Distribution:
Number of LUT Flip Flop pairs used: 86976
Number with an unused Flip Flop: 52800 out of 86976
60%
Number with an unused LUT: 34176 out of 86976 39%
Number of unique control sets: 22
It is the timing summary of the keccak hash function
with pipelining.

Timing Summary:

Speed Grade: -2

 Perika Kalanwesh / International Journal of Innovative Computer Science & Engineering

Pa
ge

16

 Minimum period: 5.528ns (Maximum Frequency:
180.904MHz)
 Minimum input arrival time before clock:
2.089ns
 Max output required time after clock: 2.783ns
Maximum combinational path delay: No path found
Summary:
In this chapter the simulations results of keccak hash
function with and without pipelining are explained
above. The logic utilization of both with and without
pipelining are shown in the table 4 and table 5. By
observing the simulation and synthesis report we
conclude that delay is reduced and frequency is
increased by using keccak hash function with pipelining.

CONCLUSION

Use of cryptographic algorithms like Keccak provide
better security needed in today's world. The algorithm
implemented in this paper also meets the less area and
high throughput requirement. The merit compared with
the eXlstmg architecture show increase in the
throughput to area ratio. The area has been reduced to
the number of 1614 registers and 8030 LUTs. The
maximum frequency achieved for the hash function is
267.2 MHz and 11 clock cycles are required. The overall
512 bit encryption process requires only 10 rounds.
Thus speed constraint is achieved. Thus the use of
Keccak hash function proves beneficial in cryptography
wherever security constraint is to be achieved.

REFERENCES

1. Siavash Bayat-Sannadi. Member, iEEE, Mehran
MozaffariKermani, Member, iEEE and Arash
Reyhani-Masoleh, Member, iEEE" Efficient and
Concurrent Reliable Realization of the Secure
Cryptographic SHA-3 Algorithm" iEEE
TRANSACTiONS ON COMPUTER-AiDED DESiGN OF
iNTEGRATED CiRCUITS AND SYSTEMS, VOL. 33, NO.
7, JULY 2014.

2. Santosh Ghosh and Ingrid Verbauwhede, Senior
Member, iEEE" BLAKE-512-Based I 28-Bit CCA2
Secure Timing Attack Resistant McEliece
Cryptoprocessor " iEEE TRANSACTIONS ON
COMPUTERS, VOL. 63, NO. 5, MAY 2014.

3. Fatma Kahri, Belgacem BoualJegue, Mohsen
Machhout and Rached Tourki, "An FPGA
implementation of the SHA-3 : The Blake hash
Function," IEEE 2013 JO'h international
MultiConference on Systems, Signals & Devices
(SSD) Hammamet, Tunisia, March 18-21,2013

4. Imad Fakhri Alshaikhli, Mohammad A. Alahmad,
and Khanssaa Munthir, "Comparison and Analysis
Study of SHA-3 Finalists," iEEE 20i 2 international
Conference on Advanced Computer Applications
and Technologies.

5. Saeid Nourizadeh and Mojtaba Javanmardi,
"Cryptanalysis of the Reduced-Round Version of
JH," iEEE 6'h international Symposium on
Telecommunications (iST'2012).

6. Keccak Hash Function, NIST (National Institute of
Standards and Technology),(2014, Mar.) [Online].
Available: http://csrc. nist.gov Igroups/ST
Ihash/sha-3.

7. D. -J. Bernstein and T. Lange. (2012). The new SHA-
3 software shootout.e-Print [Online].

8. M. Kne'zevi'c et aI., "Fair and consistent hardware
evaluation of fourteenround two SHA-3
candidates," iEEE Trans. Very Large Scale
integr.(VLSi) Syst., vol. 20, no. 5, pp. 827-840, May
2012.

9. K. Latif, M. Rao, A. Aziz, and A. Mahboob, "Efficient
hardware implementations and hardware
performance evaluation of SHA-3 finalists," in Proc.
Con! SHA-3 Candidate, pp. 1-14, Mar. 2012.

10. E. M. Shakshuki, N. Kang, and T. R. Sheltami,
"EAACK-A secure intrusion detection system for
MANETs," iEEE Trans. ind. Electron.,vol. 60, no. 3,
pp. 1089-1098, Mar. 2013.

AUTHORS DETAILS:

Perika Kalanwesh: has completed his B.Tech in Electronics and Communication Engineering from Princeton College
of Engineering and Technology, J.N.T.U.H affiliated college in 2011.He is pursuing his M.Tech in VLSI System Design
from Sri Indu College of Engineering and Technology , J.N.T.U.H affiliated college.

Thrived Dharbhashayanam: has been working as Designer at Simpli5NG Semiconductor since 2009, He received his
bachelor degree in ECE from JNTU and Masters Degree in VLSI Design from VIT University, His research Interest is
Network Security and Cryptography

