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 The concept of Fourier Transformation and Laplace Transformation play a 
vital role in diverse areas of Science and technology such as electric analysis, 
communication engineering, control engineering, linear system, analysis, 
statistics, optics, quantum physics, solution of partial differential operation 
etc. These Fourier and Laplace Transforms have various properties and these 
Properties have opened up a variety of applications. This paper provides the 
Generalization of Fourier-Laplace Transform in the Distributional sense and 
described some Adjoint Operators of Fourier-Laplace Transform. 
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1. INTRODUCTION   
Integral transforms are frequently applied when solving 
differential and integral equations and their choice 
depends on the type of considered equation. The main 
condition when choosing an integral transform is the 
possibility to reduce a differential or integral expression 
to a simpler differential equation. It is obvious that the 
number of integral transforms can be considerably 
increased by introducing new kernels [1]. Fourier and 
Laplace transform technique is applicable in many field 
of science and technology such as control Engineering, 
Communication, Signal analysis and Design, system 
analysis, solving differential equations as well as in 
Medical field [2].  

We reported various properties like linearity, Shifting, 
Scaling, Convolution, Differentiation and Integration of 
Fourier and Laplace transform elsewhere and these 
properties opened up a variety of applications. The 

Shifting property of Fourier transform identifies the fact 
that a linear displacement in time corresponds to a 
linear phase factor in the frequency domain. This 
becomes useful and important when we discuss filtering 
and the effects of the phase characteristic of a filter in 
the time domain. The differentiation property for 
Fourier Transform is very useful. In the time domain we 
recognize that differentiation will emphasize these 
abrupt changes, and this property states that consistent 
with this result, the high frequencies are amplified in 
relation to the low frequencies [3]. By all the above 
properties of Fourier and Laplace transform we can 
solve various problems like heat equation, wave 
equation etc. [4], [5].   

Testing function spaces are needed to develop Fourier-
Laplace transform, therefore these are defined along 
with distribution as follows: 
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1.1 THE SPACE , ,a bFL α   
This space is given by  

( ) ( ), , , , , ,

sup
: / , 0 ,

0

k ax l q k k
a b a b k q l t x lqFL E t x t t e D D t x C A k

x

α
α φ φ ξ φ φ+

 
 = ∈ = < < ∞ ≤ 
 < < ∞ 

            (1.1.1)                                                                                

where the constants A  and lqC  depend on the testing functionφ . 

1.2 THE SPACE , ,a bFL γ  
It is given by  

( ) ( ), , , , , ,

sup
: / , 0 ,

0

k ax l q q q
a b a b k q l t x lkFL E t x t t e D D t x C A q

x

γ
γ φ φ γ φ φ+

 
 = ∈ = < < ∞ ≤ 
 < < ∞ 

              (1.2.1) 

where, , , 0,1, 2,3,........k l q =   and the constants depend on the testing function φ  .  

1.3. DISTRIBUTIONAL GENERALIZED FOURIER-LAPLACE TRANSFORMS (𝑭𝑭𝑭𝑭𝑭𝑭)  

For ,( , ) af t x FL β
α

∗∈  , where ,aFL β
α

∗  is the dual space of ,aFLβ
α . It contains all distributions of compact support. The 

distributional Fourier-Laplace transform is a function of ( , )f t x and is defined as  

  { } ( )( , ) ( , ) ( , ), i st ipxFL f t x F s p f t x e− −= = ,                                              (1.3.1)                                                                                                  

where, for each fixed t  ( )0 ,t< < ∞ x  ( )0 x< < ∞ , 0s > and 0p > , the right hand side of (1.3.1) has a sense as 

an application of ,( , ) af t x FL β
α

∗∈  to ,
( )

a
i st ipxe FLβ

α
− − ∈   .    

This paper provides the generalization of Fourier-Laplace transform in the distributional sense and defined some 
Adjoint Operators of Fourier-Laplace transforms. The summary of this paper is as follows: 
In section 2, Adjoint shifting operator for Fourier-Laplace transform is defined, Adjoint diffetrential operators of 
Fourier-Laplace transforms is described in section 3. Lastly conclusions are given in section 4. 
Notations and terminology as per Zemanian. [6], [7].            

2.  ADJOINT OPERATORS OF FOURIER-LAPLACE TRANSFORM  

2.1. Theorem: 

The adjoint shifting operator is a continuous function from , ,a bFL α
∗ to , ,a bFL α

∗ . The adjoint operator  

( ) ( ), ,f t x f t xτ→ −  leads to the operation transform formula 

( ){ } ( ){ }, ,isFL f t x e FL f t xττ −− =
 

Proof: Consider, 

           
( ){ } ( ) ( ), , i st ipxFL f t x f t x eτ τ − −− = −

 

                                                                 ( ) ( ), , is t pxf t x e eτ− + −=  

                                                                  ( ) ( ), , i s t ipxf t x e τ−  + −  =  

                                                                    ( ) ( ), , i st ipxise f t x eτ − −−=  

                                                                     ( ){ },ise FL f t xτ−=  

                                                                       
( ){ } ( ){ }, ,isFL f t x e FL f t xττ −∴ − =
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2.2. Theorem:   
The adjoint shifting operator is a continuous function from , ,a bFL α

∗

 to , ,a bFL α
∗ . The adjoint operator 

( ) ( ), ,f t x f t x q→ − leads to the operation transform formula ( ){ } ( ){ }, ,pqFL f t x q e FL f t x−− =  

Proof:-Consider,  

          
( ){ } ( ) ( ), , , i st ipxFL f t x q f t x q e− −− = −

 

                                                            ( ) ( ), , i st ip x qf t x e−  − +  =  

                                                            ( ) ( ), , i st ipxpqe f t x e− −−=  

                                                            ( ){ },pqe FL f t x−=  

                                                                     
( ){ } ( ){ }, ,pqFL f t x q e FL f t x−∴ − =

 
2.3. Proposition: 
The adjoint shifting operator is a continuous function from , ,a bFL α

∗

 to , ,a bFL α
∗ . The adjoint operator

( ) ( ), ,f t x f t x qτ→ − − . Correspondingly we can prove ( ){ } ( ) ( ){ }, ,i s ipqFL f t x q e FL f t xττ − −− − = . Note 

that Fourier-Laplace transform is shift-shift invariant. 
3. ADJOINT DIFFERENTIAL OPERATORS OF FOURIER-LAPLACE TRANSFORM  
3.1. Theorem:  

The adjoint differential operator tf D f→ is continuous linear mapping from the dual space , ,a bFL α
∗

 into itself. 

Corresponding transform formula is ( ){ } ( ) ( ){ }, ,tFL D f t x is FL f t x=  

Proof: Consider,  

             
( ){ } ( ) ( ), , , i st ipx

t tFL D f t x D f t x e− −=
 

                                                      ( ) ( ), , i st ipx
tf t x D e− −= −  

                                                       ( ) ( ) ( ), , i st ipxf t x is e− −=  

                                                        ( ) ( ) ( ), , i st ipxis f t x e− −=  

                                                       
( ){ } ( ) ( ){ }, ,tFL D f t x is FL f t x∴ =

 
3.2. Theorem:  
The adjoint differential operator xf D f→ is continuous linear mapping from the dual space , ,a bFL α

∗

  into itself. 

Corresponding transform formula is ( ){ } ( ){ }, ,xFL D f t x pFL f t x=  

Proof: Consider,  
 

             
( ){ } ( ) ( ), , , i st ipx

x xFL D f t x D f t x e− −=
 

                                                        ( ) ( ), , i st ipx
xf t x D e− −= −  

                                                         ( ) ( ), , i st ipxf t x pe− −=  

                                                         ( ) ( ), , i st ipxp f t x e− −=  

                                                         
( ){ } ( ){ }, ,xFL D f t x pFL f t x∴ =
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3.3. Theorem:  
The adjoint operator f fθ→ is a continuous linear mapping of  , ,a bFL α

∗  into itself, the adjoint operator 

( ) ( ) ( ), ,i t i xf t x e f t xτ α− −→ corresponding operator transform formula is ( ) ( ){ } ( ), ,i t i xFL e f t x F s pτ α τ α− − = + + . 

Proof: Consider,  

            

( ) ( ){ } ( ) ( ) ( ), , ,i t i x i t i x i st ipxFL e f t x e f t x eτ α τ α− − − − − −=
                                                                               

 

                                                                  ( ) ( ) ( ), , it s x pf t x e eτ α− + − +=  

                                                                    

                                                                  ( ) ( ) ( ), , i s t i p xf t x e τ α−  + − +  =  

                                                                   ( ),F s pτ α= + +  

                
( ) ( ){ } ( ){ }( ), , ,i t i xFL e f t x FL f t x s pτ α τ α− −∴ = + +   ( ),F s pτ α= + +  

3.4. Theorem:  

Noting above proposition the adjoint operator is ( ) ( ) ( ) ( )1 2, ,k kf t x it x f t x→ − − . Corresponding operator 

transform formula is ( ) ( ) ( ){ } ( )1 2 1 2, ,k k k k
s pFL it x f t x D D F s p− − = . 

Proof: Consider,  

            
( ) ( ) ( ){ } ( ) ( ) ( ) ( )1 2 1 2, , ,k k k k i st ipxFL it x f t x it x f t x e− −− − = − −

                                                                     

                                ( ) ( ) ( ) ( )1 2, , k k i st ipxf t x it x e− −= − −  

                                ( )1 2 ,k k
s pD D F s p=  

                               
( ) ( ) ( ){ } ( )1 2 1 2, ,k k k k

s pFL it x f t x D D F s p∴ − − =
 

 
 

4. CONCLUSION 

This paper presents the Generalization of Fourier-
Laplace transform in the distributional sense. And 
some Adjoint Operators of Fourier-Laplace transform 
along with the properties of Fourier-Laplace 
transform are defined, which will be useful when this 
transform will be used to solve differential and 
integral equations. 
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