
ISSN: 2393-8528

 Contents lists available at www.ijicse.in

International Journal of Innovative Computer Science & Engineering

Volume 2 Issue 3; July-August-2015; Page No. 44-51

Pa
ge

44

Implementation of Randomized Hydrodynamic Load Balancing Algorithm using Map
Reduce framework on Open Source Platform of Hadoop

Rashi Saxena1, Sarvesh Singh2
1(Research Scholar, Jayoti Vidyapeeth Women’s University, India)

2(HOD, Computer Science & Engineering Department, Jayoti Vidyapeeth Women’s University, India)

ARTICLE INFO ABSTRACT

Received: 23 June 2015
Accepted 18 July 2015

Corresponding Author:

Rashi Saxena
Department of Computer Science
and Engineering, Jayoti Vidyapeeth
Women’s University, Jaipur

 Load balancing is performed to achieve the optimal use of the existing
computational resources as much as possible whereby none of the resources
remains idle while some other resources are being utilized. Balanced load
distribution can be achieved by the immigration of the load from the source
nodes which have surplus workload to the comparatively lightly loaded
destination nodes. Applying load balancing during run time is called dynamic
load balancing (DLB). This paper presents the randomized hydrodynamic
load balancing (RHLB) method which is a hybrid method that takes
advantage of both direct and iterative methods. Using random load
migration as a direct method, RHLB approach intends to solve the problems
derived from the exceptional instantaneous load rises, and diffuse the
surplus workload to relatively free resources. Besides, using hydrodynamic
approach as an iterative method, RHLB aims to consume minimum possible
system resources to balance the common workload distributions. The results
of the experiments designate that, RHLB outruns other iterative based
methods in terms of both balance quality and the total time of the load
balancing process.

© IJICSE, All Right Reserved.

Key words: Dynamic Load
Balancing, Randomized Hydrodynamic
Load Balancing.

INTRODUCTION
High performance computing (HPC) systems are very
effective at solving problems that can be partitioned
into small tasks. Distributing tasks among computing
nodes (CNs) is the key issue to increase the throughput
and the utilization of an HPC system. Any strategy, used
for even load distribution among CNs, is called load
balancing (LB). The main purpose of load balancing is to
keep all computational resources in use as much as
possible, and not to leave any resource in idle state
while some other resources are being utilized.
Conceptually, a load balancing algorithm implements a
mapping function between the tasks and CNs. Load
balancing is especially more crucial in case of the no
uniform computational patterns and/or in
heterogeneous environments. In dynamic load
balancing (DLB), the load is balanced during the
computation process. The primary mechanism of the
DLB is the notion of migration of tasks among CNs.
Given the instantaneous load distribution of the whole
system, queued tasks, waiting to be executed, are
migrated from a heavy loaded CN to a relatively free

CN. Thus, even in case of non-uniform computational
patterns or instantaneous computational power needs,
balanced workload distribution among the whole
system can be achieved and the utilization of the CNs
can be increased. However, any DLB method has to deal
with some issues like forecasting the right time to
invoke the balancing process, selection of the node that
makes the load balancing decisions and how to migrate
the load among the CNs. Dynamic load balancing
techniques can be classified according to migration
operation as direct and iterative methods. Direct
methods aim to find out the last execution node of the
surplus load in one load balancing step. Hence, direct
methods need actual information about the load
distribution of the whole system. These kinds of
methods are most suitable for systems equipped with a
broadcast mechanism [2]. Load balancing process is
performed by migration of the partition objects that
contain the surplus workload. Load transfer is
controlled by two dynamically selected threshold
values. The process is invoked by the sender (highly
loaded) node and the invocation mechanism is

http://www.ijicse.in/

 Rashi Saxena et.al/ International Journal of Innovative Computer Science & Engineering

Pa
ge

45

periodically triggered. They also extended their system
with a prediction model [12]. In the prediction model,
the system gathers the task execution times of the
nodes and reveals a statistical solution for the migration
problem. By broadcasting this table to each node
periodically, idle nodes can be detected by the utilized
nodes so that load transfer operation can be disposed.
Although direct dynamic load balancing methods enable
the system to reach the balanced state in a short
amount of time, the fact that they consume large
amounts of resource to compute the destination CN for
migrating node composes a weakness. Iterative
methods alternatively find out the last execution point
by migrating load iteratively. Step by step, by
transferring load to lightly loaded neighbors, surplus
load is migrated to its final destination. Thus, unlike
direct methods, balanced state of the whole system is
granted after several iterations. A CN using an iterative
method has to manage only its direct neighbors, does
not need the knowledge about the whole system. So, its
computational need is smaller compared to the cases
where the whole system should be taken into
consideration as in direct methods. However, an
instantaneous change in the state of another CN that is
not its direct neighbor does not immediately affect the
local load distribution of the iterative method. In
addition, aging which refers to the length of the delay
from the time of the determination of the workload
information to the time it is used in balancing decisions,
is less crucial in iterative methods than direct methods
[8]. By using iterative dynamic load balancing methods,
both the aging of the load information of the CNs and
the computational power can be reduced. RHLB
approach takes advantage of both direct and iterative
methods and aims to avoid the weaknesses of both
methods. Using random load migration as in direct
methods, RHLB approach intends to solve the problems
derived from the exceptional instantaneous load rises,
and diffuse the surplus workload to proportionally free
resources. Also using hydrodynamic approach as an
iterative method, RHLB aims to consume minimum
possible system resources to balance the
unexceptionally regular workload distributions. The
results of the experiments designate that, RHLB outruns
other iterative methods by decreasing the total
executing time of the load balancing process. Besides, in
RHLB idle time of resources is almost half of its closest
competitor in dynamic load balancing process.
[1] Randomized Hydrodynamic Approach
RHLB approach aims to distribute the workload that
both exists before the execution and generated during
the execution, in an efficient manner. Using
hydrodynamic approach as an iterative method, RHLB
intends to consume minimum available system
resources to balance the regular workload distributions.
Besides, by using random load distribution like a direct

method, RHLB intends to solve the problems that arise
from the exceptional instantaneous load rises, and
diffuse the surplus workload to relatively free resources
within the minimum amount of time. Consequently,
using a hybrid method enables RHLB to avoid the
weaknesses of both methods. RHLB executes an
analogous algorithm like hydrodynamic approach with
some crucial differences. Besides, it consists of two
different phases called the randomized section and the
hydrodynamic section. To begin with, it is not necessary
to stop all the running CNs to execute a load balancing
process in RHLB. Each neighborhood is free to balance
its local workload at different times. Having these
properties, RHLB exhibits a non-blocking structure. To
construct this structure, RHLB continuously checks if
any of the load balancing messages of other CNs have
been arrived to the receiving node’s incoming buffer
area, which is managed by message passing interface
(MPI) library. Hereby, all incoming messages and
requests can be queued so that they are analyzed by
the main load balancing thread whenever they are
permitted to execute the load balancing process. Being
a nonblocking method, RHLB arrives to the balanced
state more slowly compared to the HA; however each
CN spends less time on load balancing process
compared to the whole process time. As for the other
difference, RHLB method uses randomized migrations
which depicted in Figure 2. A trigger mechanism is
defined to determine whether to use the direct load
balancing technique on the current iteration step or
not. The trigger mechanism can be described as; if the
load amount of the balancing CN is greater than a
certain value, then the CN is supposed to constitute an
undesirable peak on the load gradient of the whole
system. Therefore direct load balancing process takes
place on that CN. In the randomization section, RHLB
aims to determine destination node(s) that can be used
to transfer instant load. In this determination phase, all
the CNs in the system except the inquiring node and its
direct neighbors constitute the candidates. Among
these candidates, one or more CNs (the number of CNs
is proportional to the total

Fig. 1: Randomized Process

Systems size), are selected randomly as destination
nodes. After the determination phase, instantaneous

 Rashi Saxena et.al/ International Journal of Innovative Computer Science & Engineering

Pa
ge

46

load send requests are sent to the destination CN(s).
Each node that gets an instantaneous load request,
replies in accordance with the load information of its
neighborhood. If the load amount of the inquired CN is
less than that of its neighbors, it sends a positive
acknowledgement message to the originator of the
request message. After the approval, load immigration
process takes place and the peak load is diffused
through the system roughly. In case of a rejection,
inquiring node waits for the other replies. After
receiving all the replies and transferring the surplus
load, node runs the hydrodynamic load balancing
section of the RHLB method. As stated before,
hydrodynamic load balancing section of the RHLB is a
non-blocking version of the classic hydrodynamic
approach.
[2] System Configuration
SINGLE-NODE INSTALLATION (Running Hadoop on
Ubuntu (Single node cluster setup)
Distributed File System, running on Ubuntu Linux.
Hadoop is a framework written in Java for running
applications on large clusters of commodity hardware
and incorporates features similar to those of the Google
File System (GFS) and of the MapReduce computing
paradigm. Hadoop’s HDFS is a highly fault-tolerant
distributed file system and, like Hadoop in general,
designed to be deployed on low-cost hardware. It
provides high throughput access to application data and
is suitable for applications that have large data sets.
Before we start, we will understand the meaning of the
following:
• DataNode: A DataNode stores data in the Hadoop
File System. A functional file system has more than one
DataNode, with the data replicated across them.
• NameNode: The NameNode is the centerpiece of
an HDFS file system. It keeps the directory of all files in
the file system, and tracks where across the cluster the
file data is kept. It does not store the data of these file
itself.
• Jobtracker: The Jobtracker is the service within
hadoop that farms out MapReduce to specific nodes in
the cluster, ideally the nodes that have the data, or at
least are in the same rack.
• TaskTracker: A TaskTracker is a node in the cluster
that accepts tasks- Map, Reduce and Shuffle operations
– from a Job Tracker.
• Secondary Namenode: Secondary Namenode
whole purpose is to have a checkpoint in HDFS. It is just
a helper node for namenode.
Prerequisites
Java 6 JDK- Hadoop requires a working Java 1.5+ (aka
Java 5) installation. Update the source list
user@ubuntu:~$ sudo apt-get update
or
Install Sun Java 6 JDK
Note:

If you already have Java JDK installed on your system,
then you need not run the above command.
To install it
user@ubuntu:~$ sudo apt-get install sun-java6-jdk

The full JDK which will be placed in /usr/lib/jvm/java-6-
openjdk-amd64 After installation, check whether java
JDK is correctly installed or not, with the following
command
user@ubuntu:~$ java -version

Adding a dedicated Hadoop system user
We will use a dedicated Hadoop user account for
running Hadoop.
user@ubuntu:~$sudoaddgrouphadoop_group
user@ubuntu:~$ sudo adduser --ingroup hadoop_group
hduser1

This will add the user hduser1 and the group
hadoop_group to the local machine. Add hduser1 to the
sudo group
user@ubuntu:~$ sudo adduser hduser1 sudo

Configuring SSH
The hadoop control scripts rely on SSH to perform
cluster-wide operations. For example, there is a script
for stopping and starting all the daemons in the
clusters. To work seamlessly, SSH needs to be setup to
allow password-less login for the hadoop user from
machines in the cluster. The simplest way to achieve
this is to generate a public/private key pair, and it will
be shared across the cluster.
Hadoop requires SSH access to manage its nodes, i.e.
remote machines plus your local machine. For our
single-node setup of Hadoop, we therefore need to
configure SSH access to localhost for the hduser user we
created in the earlier. We have to generate an SSH key
for the hduser user.
user@ubuntu:~$ su – hduser1
hduser1@ubuntu:~$ ssh-keygen -t rsa -P "”
The second line will create an RSA key pair with an
empty password.
Note: P “”, here indicates an empty password
You have to enable SSH access to your local machine
with this newly created key which is done by the
following command.
hduser1@ubuntu:~$ cat $HOME/.ssh/id_rsa.pub >>
$HOME/.ssh/authorized_keys

The final step is to test the SSH setup by connecting to
the local machine with the hduser1 user. The step is
also needed to save your local machines host key
fingerprint to the hduser user’s known hosts file.
hduser@ubuntu:~$ ssh localhost

If the SSH connection fails, we can try the following
(optional):

 Rashi Saxena et.al/ International Journal of Innovative Computer Science & Engineering

Pa
ge

47

• Enable debugging with ssh -vvv localhost and
investigate the error in detail.
• .Check the SSH server configuration in
/etc/ssh/sshd_config. If you made any changes to the
SSH server configuration file, you can force a
configuration reload with sudo /etc/init.d/ssh reload.
INSTALLATION
Now, I will start by switching to hduser
hduser@ubuntu:~$ su - hduser1
• Now, download and extract Hadoop 1.2.0
• Setup Environment Variables for Hadoop
Add the following entries to .bashrc file
Set Hadoop-related environment variables
export HADOOP_HOME=/usr/local/hadoop
Add Hadoop bin/ directory to PATH
export PATH= $PATH:$HADOOP_HOME/bin
Configuration
• hadoop-env.sh
Change the file: conf/hadoop-env.sh
#export JAVA_HOME=/usr/lib/j2sdk1.5-sun to in the
same file
export JAVA_HOME=/usr/lib/jvm/java-6-openjdk
amd64 (for 64 bit)
export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-
amd64 (for 32 bit)
• conf/*-site.xml
Now we create the directory and set the required
ownerships and permissions
hduser@ubuntu:~$ sudo mkdir -p /app/hadoop/tmp
hduser@ubuntu:~$ sudo chown hduser:hadoop
/app/hadoop/tmp
hduser@ubuntu:~$ sudo chmod 750 /app/hadoop/tmp

The last line gives reading and writing permissions to
the /app/hadoop/tmp directory
Error: If you forget to set the required ownerships and
permissions, you will see a java.io.IO Exception when
you try to format the name node.

Paste the following between <configuration>
• In file conf/core-site.xml
<property>
 <name>hadoop.tmp.dir</name>
 <value>/app/hadoop/tmp</value>
 <description>A base for other temporary
directories.</description>
</property>

<property>
 <name>fs.default.name</name>
 <value>hdfs://localhost:54310</value>
 <description>The name of the default file system. A
URL whose scheme and authority determine the
FileSystem implementation. The url's scheme
determines the config property (fs.SCHEME.impl)
naming the FileSystem implementation class. The url's

authority is used to determine the host, port, etc. for a
filesystem.</description>
</property>

• In file conf/mapred-site.xml
<property>
<name>mapred.job.tracker</name>
 <value>localhost:54311</value>
 <description>The host and port that the MapReduce
job tracker runs at. If "local", then jobs are run in-
process as a single map and reduce task.
 </description>
</property>

• In file conf/hdfs-site.xml
<property>
 <name>dfs.replication</name>
 <value>1</value>
 <description>Default block replication.
 The actual number of replications can be specified
when the file is created. The default is used if
replication is not specified in create time.
 </description>
</property>

Formatting the HDFS filesystem via the NameNode
To format the filesystem (which simply initializes the
directory specified by the dfs.name.dir variable). Run
the command
hduser@ubuntu:~$ /usr/local/hadoop/bin/hadoop
namenode –format

Starting your single-node cluster
Before starting the cluster, we need to give the required
permissions to the directory with the following
command
hduser@ubuntu:~$ sudo chmod -R 777
/usr/local/hadoop
Run the command
hduser@ubuntu:~$ /usr/local/hadoop/bin/start-all.sh
This will start up a Namenode, Datanode, Jobtracker
and a Tasktracker on the machine.
hduser@ubuntu:/usr/local/hadoop$ jps

Errors:
If by chance your datanode is not starting, then you
have to erase the contents of the folder
/app/hadoop/tmp The command that can be used
hduser@ubuntu:~:$ sudo rm –Rf /app/hadoop/tmp/*
You can also check with netstat if Hadoop is listening on
the configured ports. The command that can be used
hduser@ubuntu:~$ sudo netstat -plten | grep java
Errors if any, examine the log files in the /logs/
directory.

Stopping your single-node cluster
Run the command to stop all the daemons running on
your machine.

 Rashi Saxena et.al/ International Journal of Innovative Computer Science & Engineering

Pa
ge

48

hduser@ubuntu:~$ /usr/local/hadoop/bin/stop-all.sh

ERROR POINTS:
If datanode is not starting, then clear the tmp folder
before formatting the namenode using the following
command
hduser@ubuntu:~$ rm –Rf /app/hadoop/tmp/*

Note:
The masters and slaves file should contain localhost.
In /etc/hosts, the ip of the system should be given with
the alias as localhost.
Set the java home path in hadoop-env.sh as well bashrc.

MULTI-NODE INSTALLATION
Running Hadoop on Ubuntu Linux (Multi-Node Cluster)

We will build a multi-node cluster merge two or more
single-node clusters into one multi-node cluster in
which one Ubuntu box will become the designated
master but also act as a slave , and the other box will
become only a slave.
Prerequisites
Configuring single-node clusters first, here we have
used two single node clusters. Shutdown each single-
node cluster with the following command
user@ubuntu:~$ bin/stop-all.sh

Networking
The easiest is to put both machines in the same
network with regard to hardware and software
configuration. Update /etc/hosts on both machines .Put
the alias to the ip addresses of all the machines. Here
we are creating a cluster of 2 machines , one is master
and other is slave 1
hduser@master:$ cd /etc/hosts
Add the following lines for two node cluster
10.105.15.78 master (IP address of the masternode)
10.105.15.43 slave1 (IP address of the slave node)

Fig. 2 .Master-Slave Architecture

SSH access
The hduser user on the master (aka hduser@master)
must be able to connect: to its own user account on the
master - i.e. ssh master in this context. to the hduser
user account on the slave (i.e. hduser@slave1) via a

password-less SSH login. Add the hduser@master public
SSH key using the following command
hduser@master:~$ ssh-copy-id -i
$HOME/.ssh/id_rsa.pub hduser@slave1

Connect with user hduser from the master to the user
account hduser on the slave.
From master to master
hduser@master:~$ ssh master

From master to slave
hduser@master:~$ ssh slave1

Hadoop
Cluster Overview
This will describe how to configure one Ubuntu box as a
master node and the other Ubuntu box as a slave node.
Configuration
conf/masters
The machine on which bin/start-dfs.sh is running will
become the primary NameNode. This file should be
updated on all the nodes. Open the masters file in the
conf directory
hduser@master/slave :~$ /usr/local/hadoop/conf
hduser@master/slave :~$ sudo gedit masters
Add the following line
Master

conf/slaves
This file should be updated on all the nodes as master is
also a slave. Open the slaves file in the conf directory
hduser@master/slave:~/usr/local/hadoop/conf$ sudo
gedit slaves
Add the following lines
Master
Slave1

• conf/*-site.xml (all machines)
Open this file in the conf directory
hduser@master:~/usr/local/hadoop/conf$ sudo gedit
core-site.xml

Change the fs.default.name parameter (in conf/core-
site.xml), which specifies the NameNode (the HDFS
master) host and port.
conf/core-site.xml (ALL machines .ie. Master as well as
slave)
<property>
 <name>fs.default.name</name>
 <value>hdfs://master:54310</value>
 <description>The name of the default file system. A
URI whose scheme and authority determine the
FileSystem implementation. The uri's scheme
determines the config property (fs.SCHEME.impl)
naming the FileSystem implementation class. The uri's
authority is used to determine the host, port, etc. for a
filesystem.</description>
</property>

https://github.com/darkdefender27/doctuts/blob/master/OsinDocumentaion/hadoop.rst#id7
https://github.com/darkdefender27/doctuts/blob/master/OsinDocumentaion/_static/images/10.png

 Rashi Saxena et.al/ International Journal of Innovative Computer Science & Engineering

Pa
ge

49

• conf/mapred-site.xml
Open this file in the conf directory
 hduser@master:~$ /usr/local/hadoop/conf
hduser@master:~$ sudo gedit mapred-site.xml

Change the mapred.job.tracker parameter (in
conf/mapred-site.xml), which specifies the JobTracker
(MapReduce master) host and port.
conf/mapred-site.xml (ALL machines)
<property>
 <name>mapred.job.tracker</name>
 <value>master:54311</value>
 <description>The host and port that the MapReduce
job tracker runs at. If "local", then jobs are run in-
process as a single map and reduce task.
 </description>
</property>

• conf/hdfs-site.xml
Open this file in the conf directory
hduser@master:~$ /usr/local/hadoop/conf
hduser@master:~$ sudo gedit hdfs-site.xml
Change the dfs.replication parameter (in conf/hdfs-
site.xml) which specifies the default block replication.
We have two nodes available, so we set dfs.replication
to 2.

• conf/hdfs-site.xml (ALL machines)
Changes to be made
<property>
<name>dfs.replication</name>
<value>2</value>
<description>Default block replication.
 The actual number of replications can be specified
when the file is created. The default is used if
replication is not specified in create time.
 </description>

</property>

Formatting the HDFS filesystem via the NameNode
Format the cluster’s HDFS file system
hduser@master:~/usr/local/hadoop$ bin/hadoop
namenode –format

Starting the multi-node cluster
Starting the cluster is performed in two steps.
We begin with starting the HDFS daemons: the
NameNode daemon is started on master, and DataNode
daemons are started on all slaves (here: master and
slave). Then we start the MapReduce daemons: the
JobTracker is started on master, and TaskTracker
daemons are started on all slaves (here: master and
slave). Cluster is started by running the commnd on
master
hduser@master:~$ /usr/local/hadoop
hduser@master:~$ bin/start-all.sh

By this command: The NameNode daemon is started on
master, and DataNode daemons are started on all
slaves (here: master and slave). The JobTracker is
started on master, and TaskTracker daemons are
started on all slaves (here: master and slave)
To check the daemons running , run the following
commands
hduser@master:~$ jps

On slave, datanode and jobtracker should run.
hduser@slave:~/usr/local/hadoop$ jps

Stopping the multi-node cluster
To stop the multinode cluster , run the following
command on master pc

 hduser@master:~$ cd /usr/local/hadoop
hduser@master:~/usr/local/hadoop$ bin/stop-all.sh

ERROR POINTS:
Number of slaves = Number of replications in hdfs-
site.xml
also number of slaves = all slaves + master(if master is
also considered to be a slave) When you start the
cluster, clear the tmp directory on all the nodes
(master+slaves) using the following command
hduser@master:~$ rm -Rf /app/hadoop/tmp/*

Configuration of /etc/hosts , masters and slaves files on
both the masters and the slaves nodes should be the
same. If namenode is not getting started run the
following commands:
To give all permissions of hadoop folder to hduser
hduser@master:~$ sudo chmod -R 777 /app/hadoop

This command deletes the junk files which gets stored
in tmp folder of hadoop
hduser@master:~$ sudo rm -Rf /app/hadoop/tmp/*

[3] Experimental Results
All tests in this paper are performed on a cluster of
workstations where each workstation has two dual
cored Intel Xeon CPUs. Each single core is assumed to
be a separate CN on logical ring topology. As an
interprocessor communication tool, message passing
interface (MPI) library is used. Processed workload is
simple an acoustic normal mode calculation [3]. While
some cases reflect the most difficult instances of the
load distribution problem, some of them are used to
demonstrate the state that has no need to use any load
balancing method. The tests can be divided into two
main groups according to purpose of each test. First test
group aims to show the main differences between
hydrodynamic based methods (HA and RHLB) and rest
of the iterative methods. The second group intends to
demonstrate the behavior of the hydrodynamic based
solutions at particular occasions. All results are
gathered from the average values of five test
repetitions. First test group consists of three different

 Rashi Saxena et.al/ International Journal of Innovative Computer Science & Engineering

Pa
ge

50

test cases each having the purpose of underlining the
differences between the iterative methods that have
been presented above. All the tests in the first test
group are run on a 12 node cluster that has a logical
ring topology.
This graph demonstrates that without an unexpected
load addition and a peak in the load distribution
gradient, iterative methods behaves similarly and the
difference between the run times is minimal. A fair load
distribution means that all processors can run their
tasks in a fully utilized manner, without a load balancing
mechanism. Therefore this case considers the additional
load generated by processing the balancing algorithm of
each iterative method itself. This graph emphasizes that
in case of fair load distribution, maximum run time of
the total process is directly proportional to the
simplicity of the load balancing algorithm.

Fig. 3.Results for the first test group

Fig. 4. (A) Maximum run time, (B) the average dynamic
load balancing time, (C) the average idle time and (D)
the ratio of average DLB time over maximum run time
comparison between RHLB and HA methods.
The results of this case are shown in Figure 5. As it can
be deduced from the figure, RHLB presents an
improvement on the total run time with the use of
randomized method. To sum up, the test results
discussed above demonstrate that RHLB is the most
effective load balancing technique not only among the
hydrodynamic based models but also among all the

mentioned iterative models. This fact stems from the
randomized structure of the RHLB which makes it a
hybrid method. Taking the advantage of randomization,
RHLB distributes the unexpected peak load in a shorter
amount of time than any other iterative method.

Fig. 5. Comparison of the hydrodynamic based
methods in an exceptional load distribution situation.
Therefore total CN utilization is increased and maximum
run time of the whole process is reduced.

[4] CONCLUSION
The load balancing problem is crucial in multiprocessor
systems that have large number of CNs. In this study, a
randomized hydrodynamic load balancing approach is
presented as a solution to the dynamic load balancing
problem for a network of heterogeneous CNs. RHLB can
be considered as an extension of the hydrodynamic
approach which converges to a balanced state
geometrically for all configurations [15]. RHLB is
invigorated by the use of non-blocking load balancing
and the randomized load distributions. By this nature
RHLB can also be considered as a hybrid method which
combines the advantages of iterative and direct
methods. RHLB is experimented for several test cases
based on the problem of normal mode theory. As
observed in experiments, the RHLB prevails over the
existing iterative methods mentioned above, especially
in extreme load distribution situations. To conclude,
randomized hydrodynamic load balancing approach
offers substantial improvements not only in the
utilization of resources of the parallel system, but also
the total time needed to run dynamic load balancing
algorithm itself.

[5] Acknowledgement
I would like to express my special thanks of gratitude to
my guide Mr. Sarvesh singh sir who gave me the golden
opportunity to write this important paper on the topic
load balancing on cloud data centers, which also helped
me in doing a lot of research and I came to know about
so many new things, I am really thankful to them, and
also thankful to IJICSE team to give me this opportunity
to publish this paper.

 Rashi Saxena et.al/ International Journal of Innovative Computer Science & Engineering

Pa
ge

51

[6] References

1. Chengzhong XU, Burkhard MONIEN, Reinhard
LÜNING, Francis C. M. LAU “Nearest neighbor
algorithms for load balancing in parallel Computers”

2. Chang-Zhang XU, Francis C.M. LAU “Iterative
dynamic load balancing in multicomputers”, Journal
of Operational Research Society, Vol. 45 No. 7, July
1994, pp. 786–796

3. Serkan AKSOY, Hüseyin A. SERİM “Technical report
on normal mode method - Normal mod yötemi
teknik analiz raporu”, unpublished.

4. G. CYBENKO “Load balancing for ditributed memory
multiprocessors”, Journal of Parallel and Distributed
Computing, Vol. 7, 1989, pp. 279–307

5. F.C.H. LIN, R.M. KELLER “The gradient model load
balancing method”, IEEE Transactions on Software
Engineering, Vol. 13, 1987, pp. 32–38

6. W. SHU, L.V. KALE “A dynamic scheduling strategy
for the chare kernel systems”, In Proceedings of
Supercomputing, 1989, pp. 389–398

7. Marta BELTRÀN, Jose BOSQUE “Information policies
for load balancing on heterogeneous systems”, IEEE
International Symposium on Cluster Computing and
the Grid, 2005, pp. 970 – 979

8. Mark H. WILLEBEEK-LEMAIR, Anthony P. REEVES
“Strategies for dynamic load balancing on highly
parallel computers”, IEEE Transactions on parallel

and distributed systems, Vol. 4 No. 9, 1993, pp. 979
– 993

9. Malcolm YOKE, Hean LOW “Dynamic load-balancing
for BSP time warp”, 35th Annual Simulation
Symposium, 2002

10. Deyu QI, Weiwei LIN “TGrid: A next grid
environment”, First International Multi-Symposiums
on Computer and Computational Sciences, 2006.

11. Wei JIE, Wentong CAI, Stephen J. Turner “Dynamic
load-balancing using prediction in a parallel object-
oriented system”, IEEE, 2001

12. Giuseppe Di FATTA, Michael R. BERTHOLD “Dynamic
load balancing for the distributed mining of
molecular structures”, IEEE Transactions on Parallel
and Distributed Systems, Vol. 17 No. 8, August
2006.

13. Jacques M. BAHI, Sylvain CONTASSOT, Raphael
COUTURIER “Dynamic load balancing and efficient
load estimators for asynchronous iterative
algorithms”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 16 No. 4, April 2006.

14. Chi-Chung HUI, Samuel T. CHANSON “A
hydrodynamic approach to heterogeneous dynamic
load balancing in a network of computers”, IEEE
International Conference on Parallel Processing,
1996.

	INTRODUCTION
	Randomized Hydrodynamic Approach
	System Configuration
	Experimental Results
	[6] References

