
ISSN: 2393-8528

 Contents lists available at www.ijicse.in

International Journal of Innovative Computer Science & Engineering

Volume 2 Issue 3; July-August-2015; Page No.05-11

Pa
ge

5

A proposed work on randomized hydrodynamic algorithm for load balancing

Rashi saxena

Computer Science & Engineering Department, JVWU, Jaipur, India

ARTICLE INFO ABSTRACT

Received: 18 May 2015
Accepted 28 June 2015

Corresponding Author:

Rashi saxena

Computer Science & Engineering
Department, JVWU, Jaipur, India

 Load Balancing is a method of distributing workload across many servers in a
network. Typical datacenter implementations rely on large, powerful (and
expensive) computing hardware and network infrastructure, which are
subject to the usual risks associated with any physical device, including
hardware failure, power and/or network interruptions, and resource
limitations in times of high demand. Load balancing in the cloud differs from
classical thinking on load-balancing architecture and implementation by
using commodity servers to perform the load balancing. This provides for
new opportunities and economies-of-scale, as well as presenting its own
unique set of challenges. Load balancing is used to make sure that none of
your existing resources are idle while others are being utilized. To balance
load distribution, you can migrate the load from the source nodes (which
have surplus workload) to the comparatively lightly loaded destination
nodes. When load balancing is applied during runtime, it is called dynamic
load balancing — this can be realized both in a direct or iterative manner
according to the execution node selection: In the iterative methods, the final
destination nodes are determined through several iteration steps. In the
direct methods, the final destination node is selected in one step. Another
kind of Load Balancing method can be used i.e. the Randomized
Hydrodynamic Load Balancing method, a hybrid method that takes
advantage of both direct and iterative methods.

Keywords: About five key words in alphabetical order, separated by comma

© IJICSE, All Right Reserved.

Email: rashi.saxena@yahoo.co.in

1. INTRODUCTION

1.1 Cloud Computing
Cloud computing has become very popular in recent
years as it offers greater flexibility and availability of
computing resources at very low cost. The major
concern for agencies and organizations considering
moving the applications to public cloud computing
environments is the emergence of cloud computing
facilities to have far-reaching effects on the systems
and networks of the organizations. Many of the
features that make cloud computing attractive,
however, can also be at odds with traditional security
models and controls.

As with any emerging information technology area,
cloud computing should be approached carefully with
due consideration to the sensitivity of data. Planning
helps to ensure that the computing environment is as
secure as possible and is in compliance with all relevant

organizational policies and that data privacy is
maintained. It also helps to ensure that the agency
derives full benefit from information technology
spending. The security objectives of an organization are
a key factor for decisions about outsourcing
information technology services and, in particular, for
decisions about transitioning organizational data,
applications, and other resources to a public cloud
computing environment.

To maximize effectiveness and minimize costs, security
and privacy must be considered from the initial
planning stage at the start of the systems development
life cycle. Attempting to address security after
implementation and deployment is not only much more
difficult and expensive, but also more risky. Cloud
providers are generally not aware of a specific
organization’s security and privacy needs. Adjustments
to the cloud computing environment may be warranted

http://www.ijicse.in/
mailto:Rashi.saxena@yahoo.co.in

 Rashi saxena / International Journal of Innovative Computer Science & Engineering

Pa
ge

6

to meet an organization’s requirements. Organizations
should require that any selected public cloud
computing solution is configured, deployed, and
managed to meet their security and privacy
requirements.

Cloud computing technologies can be implemented in a
wide variety of architectures, under different service
and deployment models, and can coexist with other
technologies and software design approaches. The
security and privacy challenges cloud computing
presents, however, are formidable, especially for public
clouds whose infrastructure and computational
resources are owned by an outside party that sells
those services to the general public.

1.2 Cloud Service Models
Cloud service delivery is divided into three models. The
three service models are:
1.2.1 Cloud Software as a service (SaaS)
The capability provided to the consumer is to use the
provider’s applications running on a cloud
infrastructure. The applications are accessible from
various client devices through a thin client interface
such as a web browser. The consumer does not manage
the underlying cloud infrastructure.
1.2.2 Cloud Platform as a Service (Peas)
The capability provided to the consumer is to deploy
onto the cloud infrastructure consumer created or
acquired applications created using programming
languages and tools supported by the provider. The
consumer does not manage or control the underlying
cloud infrastructure, but has control over the deployed
applications and possibly application hosting
environment configurations.
1.2.3 Cloud Infrastructure as a Service (Iasi)
The capability provided to the consumer is to provision
processing, storage, networks, and other fundamental
computing resources where the consumer is able to
deploy and run arbitrary software, which can include
operating systems and applications. The consumer does
not manage or control the underlying cloud
infrastructure but has control over operating systems,
storage, deployed applications, and possibly limited
control of select networking components.
Features and parts of Iasi include:
• Utility computing service and billing model.
• Automation of administrative tasks.
• Dynamic scaling.
• Desktop virtualization.
• Policy-based services.
1.3Virtualization
It is a very useful concept in context of cloud systems.
Virtualization means”something which isn’t real”, but
gives all the facilities of a real. It is the software
implementation of a computer which will execute
different programs like a real machine. Virtualization is

related to cloud, because using virtualization an end
user can use different services of a cloud. The remote
datacenter will provide different services in a full or
partial virtualized manner.
Two types of virtualization are found in case of clouds
as given in:
• Full virtualization
• Para virtualization
1.3.1 Full Virtualization
In case of full virtualization a complete installation of
one machine is done on another machine. It will result
in a virtual machine which will have all the software
that is present in the actual server. Here the remote
datacenter delivers the services in a fully virtualized
manner. Full virtualization has been successful for
several purposes as pointed out in:
a. Sharing a computer system among multiple users
b. Isolating users from each other and from the control
program
c. Emulating hardware on another machine
1.3.2 Para virtualization
In Para virtualization, the hardware allows multiple
operating systems to run on single machine by efficient
use of system resources such as memory and processor.
E.g. VMware software. Here all the services are not fully
available, rather the services are provided partially.
Para virtualization has the following advantages as
given in :
• Disaster recovery: In the event of a system failure,
guest instances are moved to another hardware until
the machine is repaired or replaced.
• Migration: As the hardware can be replaced easily,
hence migrating or moving the different parts of a new
machine is faster and easier.
• Capacity management: In a virtualized
environment, it is easier and faster to add more hard
drive capacity and processing power. As the system
parts or hardware can be moved or replaced or
repaired easily, capacity management is simple and
easier.
1.4 Cloud Components
A Cloud system consists of 3 major components such as
clients, datacenter, and distributed servers. Each
element has a definite purpose and plays a specific role.
1.4.1 Clients
End users interact with the clients to manage
information related to the cloud. Clients generally fall
into three categories:
• Mobile: Windows Mobile Smartphone,
Smartphone, like a Blackberry, or an iPhone.
• Thin: They don’t do any computation work. They
only display the information. Servers do all the works
for them. Thin clients don’t have any internal memory.
• Thick: These use different browsers like IE or
Mozilla Firefox or Google Chrome to connect to the

 Rashi saxena / International Journal of Innovative Computer Science & Engineering

Pa
ge

7

Internet cloud. Now-a-days thin clients are more
popular as compared to other clients because of their
low price, security, low consumption of power, less
noise, easily replaceable and repairable etc.
1.4.2 Datacenter
Datacenter is nothing but a collection of servers hosting
different applications. A end user connects to the
datacenter to subscribe different applications. A
datacenter may exist at a large distance from the
clients. Now-a-days a concept called virtualization is
used to install software that allows multiple instances
of virtual server applications.
1.4.3 Distributed Servers
Distributed servers are the parts of a cloud which are
present throughout the Internet hosting different
applications. But while using the application from the
cloud, the user will feel that he is using this application
from its own machine.
1.5 Load balancing in cloud computing
Load Balancing is a method to distribute workload
across one or more servers, network interfaces, hard
drives, or other computing resources. Typical
datacenter implementations rely on large, powerful
(and expensive) computing hardware and network
infrastructure, which are subject to the usual risks
associated with any physical device, including hardware
failure, power and/or network interruptions, and
resource limitations in times of high demand. Load
balancing in the cloud differs from classical thinking on
load-balancing architecture and implementation by
using commodity servers to perform the load balancing.
This provides for new opportunities and economies-of-
scale, as well as presenting its own unique set of
challenges. Load balancing is used to make sure that
none of your existing resources are idle while others
are being utilized. To balance load distribution, you can
migrate the load from the source nodes (which have
surplus workload) to the comparatively lightly loaded
destination nodes. When you apply load balancing
during runtime, it is called dynamic load balancing —
this can be realized both in a direct or iterative manner
according to the execution node selection:
• In the iterative methods, the final destination node is
determined through several iteration steps.
• In the direct methods, the final destination node is
selected in one step.
Another kind of Load Balancing method can be used i.e.
the Randomized Hydrodynamic Load Balancing method,
a hybrid method that takes advantage of both direct
and iterative methods.
1.5.1 Goals of Load balancing
The goals of load balancing are:
1. To improve the performance substantially.
2. To have a backup plan in case the system fails even
partially.
3. To maintain the system stability.

4. To accommodate future modification in the system.
1.5.2 Types of Load balancing algorithms
Depending on who initiated the process, load balancing
algorithms can be of three categories as given in :
• Sender Initiated: If the load balancing algorithm is
initialized by the sender.
• Receiver Initiated: If the load balancing algorithm is
initiated by the receiver.
• Symmetric: It is the combination of both sender
initiated and receiver initiated. Depending on the
current state of the system, load balancing algorithms
can be divided into 2 categories as given in :
Static: It does not depend on the current state of the
system. Prior knowledge of the system is needed.
Dynamic: Decisions on load balancing are based on
current state of the system. No prior knowledge is
needed. So it is better than static approach. Here we
will discuss on various dynamic load balancing
algorithms for the clouds of different sizes.
2. Proposed work
Cloud computing is designed to provide on demand
resources or services over the Internet, usually at the
scale and with the reliability level of a data center. Map
Reduce is a programming model designed for
processing large volumes of data in parallel by dividing
the work into a set of independent tasks. It is a style of
parallel programming that is supported by some
capacity-on- demand-style clouds such as Google's Big
Table, Hadoop, and Sector.
In this paper, a load-balancing algorithm that follows
the approach of the Randomized Hydrodynamic Load
Balancing technique (more on that in the following
sections) is used. Virtualization is used to reduce the
actual number of physical servers and cost; more
importantly, virtualization is used to achieve efficient
CPU utilization of a physical machine.
To get the most from this paper, you should have a
general idea of cloud computing concepts, the
Randomized Hydrodynamic Load Balancing technique,
and the Hardtop Map Reduce programming model. A
basic understanding of parallel programming will help
and any programming knowledge on Java™ or other
object-oriented languages will be a good support tool.
For this experiment, the MapReduce algorithm was
implemented on a system using:
• Hadoop 0.20.1.
• Eclipse IDE 3.0 or above (or Rational Application
Developer 7.1).
• Ubuntu 8.2 or above.
Before diving into the Map Reduce algorithm, we’ll set
up the basics of the cloud architecture, load balancing,
Map Reduce, and parallel programming — enough at
least for this article.

2.1 Cloud architecture: The basics

 Rashi saxena / International Journal of Innovative Computer Science & Engineering

Pa
ge

8

Figure 1 shows a detailed picture of the complete system, platforms, software, and how they are used to achieve the
goal set in this paper.

Figure 1: The cloud architecture

You can see Ubuntu 9.04 and 8.2 is used for the
operating systems; Hadoop 0.20.1, Eclipse 3.3.1, and
Sun Java 6 for the platforms; the Java language for
programming; and HTML, JSP, and XML as the scripting
languages.
This cloud architecture has both mastered and slave
nodes. In this implementation, a main server is
maintained that gets client requests and handles them
depending on the type of request. The master node is

present in main server and the slave nodes in secondary
server.
Search requests are forwarded to the Name Node of
Hadoop, present in main server as you can see in Figure
2. The Hadoop Name Node then takes care of the
searching and indexing operation by initiating a large
number of Map and Reduce processes. Once the Map
Reduce operation for a particular search key is
completed, the Name Node returns the output value to
the server and in turn to the client.

Figure 2: Map and Reduce functions do searching and indexing

If the request is for a particular software,
authentication steps are done based on the customer
tenant ID, payment dues, eligibility to use a particular
software, and the lease period for the software. The
server then serves this request and allows the user to
consume a selected software combination.

The multi tenancy feature of SaaS is provided here, in
which a single instance of the software serves a number
of tenants. For every tenant specific request there will
be a thin line of isolation generated based on the
tenant id. These requests are served by a single
instance. When a tenant specific client request wants to
search files or consume any other multi-tenant

 Rashi saxena / International Journal of Innovative Computer Science & Engineering

Pa
ge

9

software the offerings use Hadoop on the provisioned
operating system instance (PaaS). Also, in order to store
his data -- perhaps a database or files-- in the cloud, the
client will have to take some memory space from the
data center (IaaS). All these moves are transparent to
the end user.
2.2 Randomized Hydrodynamic Load Balancing: The
basics
Load balancing is used to make sure that none of your
existing resources are idle while others are being
utilized. To balance load distribution, you can migrate
the load from the source nodes (which have surplus
workload) to the comparatively lightly loaded
destination nodes.
When you apply load balancing during runtime, it is
called dynamic load balancing— this can be realized
both in a direct or iterative manner according to the
execution node selection:
• In the iterative methods, the final destination node
is determined through several iteration steps.
• In the direct methods, the final destination node is
selected in one step.
For this paper, the Randomized Hydrodynamic Load
Balancing method is used, a hybrid method that takes
advantage of both direct and iterative methods.
2.3 Map Reduce: The basics
Map Reduce programs are designed to compute large
volumes of data in a parallel fashion. This requires
dividing the workload across a large number of
machines. Hadoop provides a systematic way to
implement this programming paradigm
The computation takes a set of input key/value pairs
and produces a set of output key/value pairs. The
computation involves two basic operations: Map and
Reduce.
The Map operation, written by the user, takes an input
pair and produces a set of intermediate key/ value
pairs. The Map Reduce library groups together all
intermediate values associated with the same
intermediate Key #1 and passes them to the Reduce
function.
The Reduce function, also written by the user, accepts
an intermediate Key #1 and a set of values for that key.
It merges together these values to form a possibly
smaller set of values. Typically just an output value of 0
or 1 is produced per Reduce invocation. The
intermediate values are supplied to the user's Reduce
function via an integrator (an object that allows a
programmer to traverse through all the elements of a
collection regardless of its specific implementation).
This allows you to handle lists of values that are too
large to fit in memory.

Take the example of Word Count Problem. This
will count the number of occurrences of each word in a
large collection of documents. The Mapper and
Reducer function will look like Listing 1.

Listing 1. Map and Reduce in a WordCount problem
mapper (filename, file-contents):
for each word in file-contents:
emit (word, 1)
reducer (word, values):
sum = 0
for each value in values:
sum = sum + value emit (word, sum)
The Map function emits each word plus an associated
count of occurrences. The Reduce function sums
together all counts emitted for a particular word. This
basic functionality, when built over clusters, can easily
turn into a high-speed parallel processing system.
Performing computation on large volumes of data has
been done before, usually in a distributed setting.
What makes Hadoop unique is its simplified
programming model — which allows the user to quickly
write and test distributed systems — and it’s efficient,
automatic distribution of data and work across
machines and in turn utilizing the underlying parallelism
of the CPU cores.
Let's try to make things a little clearer. As discussed
earlier, in a Hadoop cluster you have the following
nodes:
• The Name Node (the cloud master).
• The Data Nodes (or the slaves).
Nodes in the cluster have preloaded local input files.
When the Map Reduce process is started, the Name
Node uses the Job Tracker process to assign tasks which
have to be carried out by Data Nodes, through the Task
Tracker processes. Several Map processes will run in
each Data Node and the intermediate results will be
given to the combiner process which generates, for
instance, the count of words in file of one machine as(in
case of a Word Count problem). Values are shuffled
and sent to reduce processes which generate the final
output for the problem of interest.
2.4 How load balancing is used
Load balancing is helpful in spreading the load equally
across the free nodes when a node is loaded above its
threshold level. Though load balancing is not so
significant in execution of a Map Reduce algorithm, it
becomes essential when handling large files for
processing and when hardware resources use is critical.
As a highlight, it enhances hardware utilization in
resource- critical situations with a slight improvement
in performance.
A module was implemented to balance the disk space
usage on a Hadoop Distributed File System cluster
when some data nodes became full or when new empty
nodes joined the cluster. The balancer (Class Balancer
tool) was started with a threshold value; this parameter
is a fraction between 0 and 100 percent with a default
value of 10 percent. This sets the target for whether the
cluster is balanced; the smaller the threshold value, the
more balanced a cluster will be. Also, the longer it takes

 Rashi saxena / International Journal of Innovative Computer Science & Engineering

Pa
ge

10

to run the balancer. (Note: A threshold value can be so
small that you cannot balance the state of the cluster
because applications may be writing and deleting files
concurrently.)
A cluster is considered balanced if for each data node,
the ratio of used space at the node to the total capacity
of node (known as the utilization of the node) differs
from the the ratio of used space at the cluster to the
total capacity of the cluster (utilization of the cluster)
by no more than the threshold value.
The module moves blocks from the data nodes that are
being utilized a lot to the poorly used ones in an
iterative fashion; in each iteration a node moves or
receives no more than the threshold fraction of its
capacity and each iteration runs no more than 20
minutes.
In this implementation, nodes are classified as highly-
utilized, average-utilized, and under-utilized. Depending
upon the utilization rating of each node, load was
transferred between nodes and the cluster was
balanced. The module worked like this:
• First, it acquires neighborhood details:
1. When the load increases in a Data Node to the
threshold level, it sends a request to the
Name Node.
2. The Name Node had information about the load
levels of the specific Data Node’s nearest Neighbours.
3. Loads are compared by the Name Node and then
the details about the free-est neighbour nodes are sent
to the specific Data Node.
• Next, the Data Nodes go to work:
1. Each DataNode compares its own load amount with
the sum of the load amount of its nearest neighbours.
2. If a Data Node’s load level is greater than the sum
of its neighbours, then load-destination nodes (direct
neighbours AND other nodes) will be chosen at random.
3. Load requests are then sent to the destination
nodes
• Last, the request is received:
1. Buffers are maintained at every node to received
load requests.
2. A message passing interface (MPI) manages this
buffer.
3. A main thread will listen to the buffered queue and
will service the requests it receives.
4. The nodes enter the load-balancing-execution
phase.
2.5 Evaluating the performance
Different sets of input files were provided, each of
different size, and executed the Map Reduce tasks in
both single- and two-node clusters. The corresponding
times of execution were measured and we came to the
conclusion that running Map Reduce in clusters is by far
the more efficient for a large volume of input file.
The graphs in Figure 3 illustrate our performance
results from running on various nodes.

Figure 3: Map Reduce load balancing works more
efficiently in clusters

3. Conclusion
Our experiment with Hadoop Map Reduce and
load balancing lead to two inescapable
conclusions:
• In a cloud environment, the Map Reduce
structure increases the efficiency of throughput for
large data sets. In contrast, you wouldn't
necessarily see such an increase in throughput in
a non-cloud system.
• When the data set is small, Map Reduce and
load balancing do not affect an appreciable
increase in throughput in a cloud system.
Therefore, consider a combination of Map Reduce-
style parallel processing and load balancing when
planning to process a large amount of data on your
cloud system.

References

1. Chengzhong XU, Burkhard MONIEN, Reinhard

LÜNING, Francis C. M. LAU “Nearest neighbor
algorithms for load balancing in parallel
Computers”

2. Chang-Zhang XU, Francis C.M. LAU “Iterative
dynamic load balancing in multicomputers”, Journal
of Operational Research Society, Vol. 45 No. 7, July
1994, pp. 786–796

 Rashi saxena / International Journal of Innovative Computer Science & Engineering

Pa
ge

11

3. Serkan AKSOY, Hüseyin A. SERİM “Technical report
on normal mode method - Normal mod yötemi
teknik analiz raporu”, unpublished.

4. G. CYBENKO “Load balancing for ditributed memory
multiprocessors”, Journal of Parallel and Distributed
Computing, Vol. 7, 1989, pp. 279–307

5. F.C.H. LIN, R.M. KELLER “The gradient model load
balancing method”, IEEE Transactions on Software
Engineering, Vol. 13, 1987, pp. 32–38

6. W. SHU, L.V. KALE “A dynamic scheduling strategy
for the chare kernel systems”, In Proceedings of
Supercomputing, 1989, pp. 389–398

7. Marta BELTRÀN, Jose BOSQUE “Information policies
for load balancing on heterogeneous systems”, IEEE
International Symposium on Cluster Computing and
the Grid, 2005, pp. 970 – 979

8. Mark H. WILLEBEEK-LEMAIR, Anthony P. REEVES
“Strategies for dynamic load balancing on highly
parallel computers”, IEEE Transactions on parallel
and distributed systems, Vol. 4 No. 9, 1993, pp. 979
– 993

9. Malcolm YOKE, Hean LOW “Dynamic load-balancing
for BSP time warp”, 35th Annual Simulation
Symposium, 2002

10. Deyu QI, Weiwei LIN “TGrid: A next grid environ-
ment”, First International Multi-Symposiums on
Computer and Computational Sciences, 2006

11. Wei JIE, Wentong CAI, Stephen J. Turner “Dynamic
load-balancing using prediction in a parallel object-
oriented system”, IEEE, 2001

12. Wei JIE, Wentong CAI, Stephen J. Turner “Dynamic
load-balancing in a data parallel object-oriented
system”, IEEE, 2001

13. Giuseppe Di FATTA, Michael R. BERTHOLD
“Dynamic load balancing for the distributed mining
of molecular structures”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 17 No. 8,
August 2006

14. Jacques M. BAHI, Sylvain CONTASSOT, Raphael
COUTURIER “Dynamic load balancing and efficient
load estimators for asynchronous iterative
algorithms”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 16 No. 4, April 2006

15. Chi-Chung HUI, Samuel T. CHANSON “A
hydrodynamic approach to heterogeneous dynamic
load balancing in a network of computers”, IEEE
International Conference on Parallel Processing,
1996

16. Chi-Chung HUI, Samuel T. CHANSON
“Hydrodynamic load balancing”, IEEE Transactions
on Parallel and Distributed Systems, Vol. 10 No. 11,
November 2006.

	1. INTRODUCTION
	2. Proposed work
	3. Conclusion
	References

