
ISSN: 2393-8528

Contents lists available at www.ijicse.in

International Journal of Innovative Computer Science & Engineering

Volume 5 Issue 3; May-June 2018; Page No. 20-23

*Corresponding author: Alexey Vasyukov

Pa
ge

20

Using Real Time Linux Kernel with Computationally Intensive Workloads

Alexey Vasyukov1, Alexey Ermakov2
1 Moscow Institute of Physics and Technology,

Institutsky lane 9, Dolgoprudny, 141701, Russia
2 Moscow Institute of Physics and Technology,

Institutsky lane 9, Dolgoprudny, 141701, Russia

ABSTRACT
This article is devoted to the problems of running in the cloud computing environment scientific and
engineering applications, which require both a large amount of calculations and also a precise temporary
resolution of operations. Such requirements typically arise in applications that receive data from the
hardware, process it, and the results of processing are used to issue control commands for the equipment.
The article considers the possibility of using a real-time Linux kernel to support this class of applications.
Different hardware was tested, the results were obtained for achievable latency for real-time processes, and
also the effect of the real-time kernel on the performance of the computing subsystem was measured (the
number of GFlops in LINPACK tests, and the speed of working with memory on NUMA systems).
Key words: real time linux, soft real time, preempt_rt

I. REAL TIME LINUX KERNEL

The real-time system must ensure that the task that
is being performed will receive CPU time at least
after a specified interval. Therefore, the creation of
real-time systems imposes very stringent
requirements on low-level architecture. General-
purpose systems (including generic Linux kernel)
were initially designed without these requirements,
so they cannot provide real-time operation.
General-purpose systems focus on achieving the
maximum overall system performance "on
average". As a result, some applications may
sometimes experience delays. In the vast majority
of cases, a delay of a few tenths of a second will not
be noticed, but there are tasks for which such times
are critical.

For the Linux kernel, there is a set of patches
PREEMPT_RT [1], in which the mechanisms of the
work of the kernel with locks are revised, high-
resolution timers are included, the non-preemtable
parts of the kernel code are divided into minimal
blocks, and a number of other optimizations are
made. When using PREEMPT_RT, however, the
required time for real-time task execution is
provided on average, but may not be provided in
the worst cases. In accordance with the generally
accepted classification, the real-time Linux kernel
should be referred to soft real-time operating

systems.

However, for many tasks this level of determinism
is acceptable. And in this case, another factor is
important - unlike the specialized real-time
operating systems, from the point of view of the
API real-time Linux does not differ from the usual
Linux kernel. As a result, it becomes possible to
quickly transfer applications to the real-time
operating system and start working with them in a
new environment. Of course, this does not
guarantee that required level of determinism will
be achieved automatically at the level of
application software. In any case, the process of
mutual optimization of application settings,
operating system and hardware infrastructure will
be required. Nevertheless, it is extremely important
that one does not need to rewrite the applications
to get started. It is possible to start the system with
the usual applications, measure the delays received
at different stages of processing, and then make
corrections only where they are needed.

Figure 1 shows the results for processing interrupts
from equipment by a system based on a
conventional Linux kernel. Three series of
measurements are carried out, which are shown on
the graphs in color. The processing time in
nanoseconds is laid out horizontally; the probability
density and probability are plotted vertically on two

http://www.ijicse.in/

Alexey Vasyukov et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

21

graphs, respectively. Figure 2 shows similar results
obtained by the system based on the real-time
Linux kernel.

Fig.1. Interrupt handling, regular Linux kernel

Fig.2. Interrupt handling, real-time Linux kernel

It can be seen that for a generic purpose Linux
kernel, the results vary significantly for different
series, and 90% of events fit within an interval of 0-
16 μs. For the real-time kernel, the differences
between series are insignificant, and 90% of the
events fit within the 0-2 μs interval.

II. HARDWARE
Hewlett-Packard servers were used for testing, the
hardware settings were performed in accordance
with [2]. All machines run RHEL6.6 with a real-time
kernel, kernel version 3.10.33-rt32.33.el6rt.x86_64.
The characteristics of the processors of test
machines are given in Table 1.

Table 1: Hardware specification

System g9test1 g9test2 tks7 tks3

CPU type Intel(R)
Xeon(R) CPU
E5-2695 v3

Intel(R)
Xeon(R) CPU
E5-2667 v3

Xeon(R)
CPU E5-
2690 v2

Intel(R)
Xeon(R)

CPU X5687

CPU Freq 2.30GHz 3.20GHz 3.00GHz 3.60GHz

CPU
Cores

14 8 10 4

CPU
Sockets

2 2 2 2

GFLOPS 1030 819 480 115.2

III. REAL TIME KERNEL AND HIGH CPU LOAD

The real-time kernel provides determinism, but it
comes with some cost, significant amount of
additional work is required in the kernel part of the
system. This fact can be important for systems that
perform complex calculations simultaneously with
processing interrupts To assess the impact of the
real-time kernel on performance, the standard Intel
linpack 11.2.2.010 test [3] was used. The High
Performance Linpack test is designed to evaluate
the computing power of systems. The test consists
of solutions of a system of linear equations. In the
role of the result is the number of operations with a
floating point per second (Flops). The theoretical
performance values for all the systems considered
in the tests are given in Table 1. It should be noted
that the typical value of practical performance in
HPC tests for modern systems based on the
general-purpose Linux kernel is at the level of 90-
95%.

Two HPL tests were conducted. In each test, the
system performance was measured depending on
the size of the problem (Fig. 3 and Fig. 4).

Fig.3: The performance of the systems in the
Linpack test, the first series of measurements (X

axis – problem size, Y axis – performance in
GFLOPS).

Alexey Vasyukov et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

22

Fig.4: The performance of the systems in the
Linpack test, the second series of measurements

(X axis – problem size, Y axis – performance in
GFLOPS).

Thus, the overhead costs when running an
intensive computing load in a real-time
environment depend on the equipment used, and
range from 7% in the best cases to 32% in worst
cases. Basically, degradation of performance is the
expected result, but the value obtained clearly
indicates that it is impossible to neglect it for
resource-intensive applications.

To test RAM operations numademo utility [4] was
used. We considered the tests numademo memcpy
and numademo random2 (memory copy and
random access). The block size in all tests is 256MB.
The highest speed of work with memory can be
achieved with calls within the same NUMA node.
When calling "crossed" nodes, the minimum speed
is achievable. Table 2 shows only the largest and
smallest result for the average speed. These results
do not differ from the results when using a general
purpose kernel.

Table 2: RAM performance on NUMA system.

 g9test1 g9test2 tks7 tks3

Memcpy
max

32119.49
MB/s

38936.98
MB/s

11545.11
MB/s

16696.45
MB/s

Memcpy
min

23670.51
MB/s

24758.17
MB/s

6116.19
MB/s

9822.69
MB/s

Random
max

143.32
MB/s

173.59
MB/s

182.87
MB/s

179.05
MB/s

Random
min

122.74
MB/s

155.05
MB/s

158.91
MB/s

151.07
MB/s

To assess the achievable time resolution for real-
time applications, the cyclictest utility [5] (version

of the package rt-tests-0.83-1.el6rt.x86_64) was
used. The cyclictest test allows to evaluate the
realtime performance of the kernel. During the
test, a thread is run on each core and wakes up on
the timer. On waking, the thread measures the
difference between the actual awakening time and
the time when the thread should be woke up. This
difference is the latency caused by operating
system and hardware.

The test was started twice with the parameters "-U
-H 500 -p 10". The first run was without the load for
5 minutes. The second run was for 20 minutes with
Intel Linpack running simultaneously. Since the test
was run with FIFO priority of 10, high background
load should not have a significant effect on RT
behavior.

The following figures show the latency distribution
for the two test runs. Since the distributions have a
clear maximum in the region of 0-10 μs, for
convenience two graphs are presented for each
test: the head of distribution and the tail.

Fig.5: Test without load, head of distribution (X
axis – latency in μs, Y axis – percentage of events

with the given latency).

Fig.6. Test without load, tail of distribution (X axis
– latency in μs, Y axis – percentage of events with

the given latency).

Alexey Vasyukov et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

23

Fig.7: Test with HPL background load, head of
distribution (X axis – latency in μs, Y axis –

percentage of events with the given latency).

Fig.8: Test with HPL background load, tail of
distribution (X axis – latency in μs, Y axis –

percentage of events with the given latency).

Thus, when starting the real-time process without
the load, 90% of the events fit into the 0-3μs
interval. With a simultaneous operation of
intensive computational load (HPL takes 100% of
available processor time), 90% of events fit into the
interval of 0-7μs. (For comparison, the general-
purpose kernel gives a result of 0-16 microseconds
without the load - see Fig. 2.). This result shows a
sufficient quality of the real-time kernel (by the
standards of soft real-time operating systems),
including test cases with a heavy load on the
system.

IV. CONCLUSION

The results show the possibility of using a real-time
Linux kernel to support the operation of
applications, which are characterized by both a
large amount of computation and high
requirements for the temporary resolution of
operations.

The testing showed that achievable determinism
for generic Linux kernel are the following: 90% of
events fit within an interval of 0-16 μs, results differ
significantly from test to test. For a real-time
kernel, the differences between test runs are
insignificant, and 90% of events fit within an
interval of 0-3 μs when running without
background load and in an interval of 0-7 μs when
running simultaneously with HPL, that consumes
100% of the available CPU time.

The overhead of ensuring the given level of
determinism by the real-time kernel depends on
the equipment used. For tasks related to intensive
computing, overheads vary from 7% in the best
cases to 32% in the worst cases.

ACKNOWLEDGMENT:

The research was supported by Russian Foundation
for Basic Research grant 15-29-07096.

REFERENCES:

1. Real-Time Linux [Online] Available

https://rt.wiki.kernel.org/index.php/Main_Pag
e [Accessed: June. 20, 2018]

2. Configuring and Tuning HP Servers for Low-
Latency Applications [Online] Available
http://www.fusionio.com/load/-media-
/2ojjak/docsLibrary/Configuring_and_Tuning_H
P_Servers_for_Low-Latency_Applications-
c01804533.pdf [Accessed: June. 20, 2018]

3. Intel Linpack [Online] Available
https://software.intel.com/en-us/articles/intel-
math-kernel-library-linpack-download
[Accessed: June. 20, 2018]

4. Libnuma toolkit [Online] Available
http://oss.sgi.com/projects/libnuma/
[Accessed: June. 20, 2018]

5. Cyclictest toolkit [Online] Available
https://rt.wiki.kernel.org/index.php/Cyclictest
[Accessed: June. 20, 2018]

