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ABSTRACT 
This article is devoted to the problems of running in the cloud computing environment scientific and 
engineering applications, which require both a large amount of calculations and also a precise temporary 
resolution of operations. Such requirements typically arise in applications that receive data from the 
hardware, process it, and the results of processing are used to issue control commands for the equipment. 
The article considers the possibility of using a real-time Linux kernel to support this class of applications. 
Different hardware was tested, the results were obtained for achievable latency for real-time processes, and 
also the effect of the real-time kernel on the performance of the computing subsystem was measured (the 
number of GFlops in LINPACK tests, and the speed of working with memory on NUMA systems). 
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I. REAL TIME LINUX KERNEL  

The real-time system must ensure that the task that 
is being performed will receive CPU time at least 
after a specified interval. Therefore, the creation of 
real-time systems imposes very stringent 
requirements on low-level architecture. General-
purpose systems (including generic Linux kernel) 
were initially designed without these requirements, 
so they cannot provide real-time operation. 
General-purpose systems focus on achieving the 
maximum overall system performance "on 
average". As a result, some applications may 
sometimes experience delays. In the vast majority 
of cases, a delay of a few tenths of a second will not 
be noticed, but there are tasks for which such times 
are critical. 

For the Linux kernel, there is a set of patches 
PREEMPT_RT [1], in which the mechanisms of the 
work of the kernel with locks are revised, high-
resolution timers are included, the non-preemtable 
parts of the kernel code are divided into minimal 
blocks, and a number of other optimizations are 
made. When using PREEMPT_RT, however, the 
required time for real-time task execution is 
provided on average, but may not be provided in 
the worst cases. In accordance with the generally 
accepted classification, the real-time Linux kernel 
should be referred to soft real-time operating 

systems. 

However, for many tasks this level of determinism 
is acceptable. And in this case, another factor is 
important - unlike the specialized real-time 
operating systems, from the point of view of the 
API real-time Linux does not differ from the usual 
Linux kernel. As a result, it becomes possible to 
quickly transfer applications to the real-time 
operating system and start working with them in a 
new environment. Of course, this does not 
guarantee that required level of determinism will 
be achieved automatically at the level of 
application software. In any case, the process of 
mutual optimization of application settings, 
operating system and hardware infrastructure will 
be required. Nevertheless, it is extremely important 
that one does not need to rewrite the applications 
to get started. It is possible to start the system with 
the usual applications, measure the delays received 
at different stages of processing, and then make 
corrections only where they are needed. 

Figure 1 shows the results for processing interrupts 
from equipment by a system based on a 
conventional Linux kernel. Three series of 
measurements are carried out, which are shown on 
the graphs in color. The processing time in 
nanoseconds is laid out horizontally; the probability 
density and probability are plotted vertically on two 
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graphs, respectively. Figure 2 shows similar results 
obtained by the system based on the real-time 
Linux kernel. 

 

Fig.1. Interrupt handling, regular Linux kernel 

 

Fig.2. Interrupt handling, real-time Linux kernel 

It can be seen that for a generic purpose Linux 
kernel, the results vary significantly for different 
series, and 90% of events fit within an interval of 0-
16 μs. For the real-time kernel, the differences 
between series are insignificant, and 90% of the 
events fit within the 0-2 μs interval. 

II. HARDWARE 
Hewlett-Packard servers were used for testing, the 
hardware settings were performed in accordance 
with [2]. All machines run RHEL6.6 with a real-time 
kernel, kernel version 3.10.33-rt32.33.el6rt.x86_64. 
The characteristics of the processors of test 
machines are given in Table 1. 
 
 
 
 
 

Table 1: Hardware specification 

System g9test1 g9test2 tks7 tks3 

CPU type Intel(R) 
Xeon(R) CPU 
E5-2695 v3  

Intel(R) 
Xeon(R) CPU 
E5-2667 v3 

Xeon(R) 
CPU E5-
2690 v2 

Intel(R) 
Xeon(R) 

CPU X5687 

CPU Freq 2.30GHz 3.20GHz 3.00GHz  3.60GHz 

CPU 
Cores 

14 8 10 4 

CPU 
Sockets 

2 2 2 2 

GFLOPS 1030 819 480 115.2 
 

III. REAL TIME KERNEL AND HIGH CPU LOAD 

The real-time kernel provides determinism, but it 
comes with some cost, significant amount of 
additional work is required in the kernel part of the 
system. This fact can be important for systems that 
perform complex calculations simultaneously with 
processing interrupts To assess the impact of the 
real-time kernel on performance, the standard Intel 
linpack 11.2.2.010 test [3] was used. The High 
Performance Linpack test is designed to evaluate 
the computing power of systems. The test consists 
of solutions of a system of linear equations. In the 
role of the result is the number of operations with a 
floating point per second (Flops). The theoretical 
performance values for all the systems considered 
in the tests are given in Table 1. It should be noted 
that the typical value of practical performance in 
HPC tests for modern systems based on the 
general-purpose Linux kernel is at the level of 90-
95%. 

Two HPL tests were conducted. In each test, the 
system performance was measured depending on 
the size of the problem (Fig. 3 and Fig. 4). 

 

Fig.3: The performance of the systems in the 
Linpack test, the first series of measurements (X 

axis – problem size, Y axis – performance in 
GFLOPS). 
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Fig.4: The performance of the systems in the 
Linpack test, the second series of measurements 

(X axis – problem size, Y axis – performance in 
GFLOPS). 

Thus, the overhead costs when running an 
intensive computing load in a real-time 
environment depend on the equipment used, and 
range from 7% in the best cases to 32% in worst 
cases. Basically, degradation of performance is the 
expected result, but the value obtained clearly 
indicates that it is impossible to neglect it for 
resource-intensive applications. 

To test RAM operations numademo utility [4] was 
used. We considered the tests numademo memcpy 
and numademo random2 (memory copy and 
random access). The block size in all tests is 256MB. 
The highest speed of work with memory can be 
achieved with calls within the same NUMA node. 
When calling "crossed" nodes, the minimum speed 
is achievable. Table 2 shows only the largest and 
smallest result for the average speed. These results 
do not differ from the results when using a general 
purpose kernel. 

Table 2: RAM performance on NUMA system. 

 g9test1 g9test2 tks7 tks3 

Memcpy 
max 

32119.49 
MB/s 

38936.98 
MB/s 

11545.11 
MB/s 

16696.45 
MB/s 

Memcpy 
min 

23670.51 
MB/s  

24758.17 
MB/s 

6116.19 
MB/s 

9822.69 
MB/s 

Random 
max 

143.32 
MB/s 

173.59 
MB/s 

182.87 
MB/s  

179.05 
MB/s 

Random 
min 

122.74 
MB/s 

155.05 
MB/s 

158.91 
MB/s 

151.07 
MB/s 

 

To assess the achievable time resolution for real-
time applications, the cyclictest utility [5] (version 

of the package rt-tests-0.83-1.el6rt.x86_64) was 
used. The cyclictest test allows to evaluate the 
realtime performance of the kernel. During the 
test, a thread is run on each core and wakes up on 
the timer. On waking, the thread measures the 
difference between the actual awakening time and 
the time when the thread should be woke up. This 
difference is the latency caused by operating 
system and hardware. 

The test was started twice with the parameters "-U 
-H 500 -p 10". The first run was without the load for 
5 minutes. The second run was for 20 minutes with 
Intel Linpack running simultaneously. Since the test 
was run with FIFO priority of 10, high background 
load should not have a significant effect on RT 
behavior. 

The following figures show the latency distribution 
for the two test runs. Since the distributions have a 
clear maximum in the region of 0-10 μs, for 
convenience two graphs are presented for each 
test: the head of distribution and the tail. 

 

Fig.5: Test without load, head of distribution (X 
axis – latency in μs, Y axis – percentage of events 

with the given latency). 

 

Fig.6. Test without load, tail of distribution (X axis 
– latency in μs, Y axis – percentage of events with 

the given latency). 
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Fig.7: Test with HPL background load, head of 
distribution (X axis – latency in μs, Y axis – 

percentage of events with the given latency). 

 

Fig.8: Test with HPL background load, tail of 
distribution (X axis – latency in μs, Y axis – 

percentage of events with the given latency). 

Thus, when starting the real-time process without 
the load, 90% of the events fit into the 0-3μs 
interval. With a simultaneous operation of 
intensive computational load (HPL takes 100% of 
available processor time), 90% of events fit into the 
interval of 0-7μs. (For comparison, the general-
purpose kernel gives a result of 0-16 microseconds 
without the load - see Fig. 2.). This result shows a 
sufficient quality of the real-time kernel (by the 
standards of soft real-time operating systems), 
including test cases with a heavy load on the 
system. 

 

 

 

IV. CONCLUSION 

The results show the possibility of using a real-time 
Linux kernel to support the operation of 
applications, which are characterized by both a 
large amount of computation and high 
requirements for the temporary resolution of 
operations. 

The testing showed that achievable determinism 
for generic Linux kernel are the following: 90% of 
events fit within an interval of 0-16 μs, results differ 
significantly from test to test. For a real-time 
kernel, the differences between test runs are 
insignificant, and 90% of events fit within an 
interval of 0-3 μs when running without 
background load and in an interval of 0-7 μs when 
running simultaneously with HPL, that consumes 
100% of the available CPU time. 

The overhead of ensuring the given level of 
determinism by the real-time kernel depends on 
the equipment used. For tasks related to intensive 
computing, overheads vary from 7% in the best 
cases to 32% in the worst cases. 
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