
ISSN: 2393-8528

Contents lists available at www.ijicse.in

International Journal of Innovative Computer Science & Engineering

Volume 5 Issue 3; May-June 2018; Page No. 14-19

*Corresponding author: Vishal Pawar

Pa
ge

14

Improving CPU Performance of Xen Hypervisor in Virtualized Environment

Vishal Pawar1, Suraj Yadav2
1 M. Tech Scholar, CSE, Jagannath University, Jaipur, Rajasthan (India)

vishal.vicky.pawar@gmail.com
2 Assistant Professor, CSE, Jagannath University, Jaipur, Rajasthan (India)

er.surajyadav@gmail.com

ABSTRACT
In the large organizations, which are spread across large geographical area, virtualization plays an important
role. This is because the amount of resources of a single physical server is large enough to be completely
utilized by a single operating system and hence result in wastage of resources. The virtualization of hardware
resources allows more than one virtualized servers to share same physical machine. A significant
performance drop is observed in a virtualized operating system in comparison to when it runs directly on
hardware. This depends on both the CPU technology as well as the virtualization technique used. The
performance of the virtual machines also depends on the virtual CPU scheduling technique used. In
XenServer, the Credit Scheduler assigns each virtual CPUs to physical CPUs asynchronously. But if the
workload is concurrent, there is a need for synchronization. In this paper, we ran our guest operating system
two biggest server virtualization platforms of recent times, namely, VMware ESXi and Citrix XenServer, which
both use different approaches to virtualization. After analyzing different parameters in concurrent workload,
we found that our guest performs better on VMware than XenServer. Then we proposed an improved virtual
CPU scheduling algorithm for Xen hypervisor, which supports synchronization of concurrent programs and
significantly reduces the CPU waste time in concurrent workload.
Keywords: Cloud Computing, Performance, Virtualization, VMware, Xen, Virtual Machine Monitor,
Hypervisor, Credit Scheduler, Virtual CPU Scheduling

1. INTRODUCTION

Virtualization has become an important part of
cloud computing environment. This is because of
the functions that are provided by a virtualization
platform. There is a continuous improvement in
CPU architecture and thus the processing power of
modern physical servers. These valuable resources
will go waste if only one server works on a physical
machine. Virtualization becomes necessary in such
modern systems, to fully utilize their resources.
Virtualization also benefits the data centers by
increasing number of users on cloud.

Virtualization provides reliability, scalability,
isolation and resource control to data centers.
Reliability means that even if one physical resource
malfunctions or stops working, the virtual machine
should not be affected. For e.g. if one of the
physical server stops working, then the virtual
machine starts utilizing another physical server on
the cloud but does not stops working. Scalability is
largely improved using virtualization. As the

number of virtual machines can be increased easily,
the data centers are now more scalable [1].
When more than one virtual machines run on the
same physical system, it becomes important for
virtual machine monitor (VMM or hypervisor) to
isolate them, especially on a cloud environment,
where there are users from all around the world
with no mutual co-operation. Hypervisor makes
sure that the performance of a virtual machine
must not be affected by the execution of
applications on other virtual machines. All VMs and
their performance must be independent of each
other. Resource control is another function of a
hypervisor which provides a control of how much
resources a virtual machine is allowed to use. This
is useful in cases where we know in advance that
what kinds of applications will be executed in which
virtual machine [2].

Virtualization has many advantages but it also
comes at the cost of performance drop. There is a
significant overhead in performance in presence of
hypervisor. Since hypervisor is at the lowest level in

http://www.ijicse.in/

Vishal Pawar et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

15

virtualization architecture, any performance
overhead on guest operating system due to
hypervisor can not be further reduced in upper
layers, it keeps on adding like a tax. Hence it is
important to select a hypervisor that provide
minimum performance overhead [8].

The virtual machine performance depends on their
scheduling on the physical server. Thus, it is
important to have a good VM scheduling algorithm.
In Credit Scheduler in XenServer, each virtual CPU is
assigned to a physical CPU asynchronously. This
gives best performance in parallel workload. But if
the workload is concurrent, then the
synchronization between threads is necessary,
because the threads are not independent. The
original credit scheduling algorithm in XenServer
assign each VCPU asynchronously to PCPUs. This
can lead to waste of CPU time. So, it is required
that the load balancing algorithm should not
modify the scheduling decisions that were made for
synchronization [3]. Our proposed algorithm is a
modification of the original credit scheduling
algorithm.

In this paper, we measured the difference in
performance of guest operating system, which is
Windows Server, by running it, first on Citrix
XenServer and then on VMware ESXi. This
experiment suggests that VMware ESXi proves to
be better than Citrix XenServer with concurrent
workload. We proposed a virtual machine
scheduling algorithm which is a slight modification
of Credit Scheduling algorithm in XenServer. We
introduced a new priority level for concurrent
program threads, which allow them to preempt and
run at the next time slice. This increases CPU
utilization and throughput.

The remaining paper is divided as follows. Section 2
gives a background knowledge on hypervisors, their
architecture and Credit Scheduling algorithm.
Section 3 summarizes some relevant work in this
area. Section 4 contains methodology of our
experiment and the proposed algorithm. Section 5
has results and their analysis. Section 6 gives
conclusion and directions for future work. Section 7
is References.

2. BACKGROUND

Virtualization is the method to create the virtual
version of system components. In server
virtualization, the guest operating system does not
interact directly with the hardware. There is an
addition layer between the two, this abstraction
layer is known as hypervisor or virtual machine

monitor (VMM). The virtual machine is an isolated
environment where we install an operating system.
This is operating system is called guest operating
system. The hypervisor is responsible for handling
low level instructions of guest operating system.
The way in which these instructions are handled
depends on the virtualization approach used [4].

2.1. Different Virtualization Approaches

Full Virtualization: In this approach, the hypervisor
provides a complete virtualized environment to
guest operating system. This is called full
virtualization because the guest operating system
does not know that it is being virtualized. All the
guests are isolated from each other. The binary
translations are used for converting the instructions
made for hardware access. These instructions are
given by hypervisor on the behalf of virtual guest.
The guest operating systems are not modified in
this approach.

Para-virtualization: In this approach, the guest
operating systems are modified so that there is a
good coordination between the hypervisor and
guest operating system and are run in a lower ring
than full virtualization. Since the guest operating
system is modified, it is aware of it being
virtualized. The merit is that the guest operating
systems can be optimized specially to run in para-
virtualized environment. This limits the guests to be
open source like Linux. Although all major
operating systems are now configured to run in
XenServer, which uses para-virtualization.

Hardware Assisted Virtualization: Virtualization
technique is also being supported by hardware
vendors like Intel and AMD. Their processors
support running of different operating systems on a
physical machine. Each operating system manages
its own processor independently. Here the virtual
processors are real, unlike in full virtualization
where those are simulated. Intel-VT and AMD-V are
the examples which provide hardware-assisted
virtualization [4].

Figure 1: Virtualization Approaches

Vishal Pawar et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

16

2.2. Types of Hypervisors

A hypervisor is the virtualization layer between
guest operating systems and underlying hardware.
The types of hypervisors are as follows: Type 1 and
Type 2 [9].

Type 1 Hypervisor: This is also called bare metal
hypervisor. This hypervisor installs and runs directly
on the hardware. It does not require any other
operating system. Type 1 hypervisors generally do
not provide graphical user interface. Instead these
provide simple BIOS like interface operated with
keyboard. These types of hypervisors are mostly
used on dedicated servers where better
performance is the priority. E.g. VMware ESXi, Citrix
XenServer.

Figure 2: Type 1 Hypervisor

Type 2 Hypervisor: In Type 2 hypervisors, there is a
host operating system on which the hypervisor
installs and runs. This hypervisor looks like any
other application program with a graphical user
interface. These hypervisors give lower
performance than the type-1. Hence these are not
used on big servers. These can be used by any
personal computer user to test different operating
system. E.g. VMware Workstation, Oracle
VirtualBox.

Figure 3: Type 2 Hypervisor

2.3. VMware ESXi and Citrix XenServer

VMware ESXi: VMware ESXi is a commercial type 1
hypervisor which provides full virtualization.
VMware provides simple interface for

administrator. It provides the guest operating
systems with virtual hardware. The guest operating
system is not modified so it remains unaware of it
being virtualized. All the virtual machines are
isolated from each other. Virtual machine monitor
tool VMware vSphere is used to configure virtual
machines [1].

Citrix XenServer: Citrix XenServer is also a type 1
hypervisor, but it is free and open-source. It
provides paravirtualization. XenServer modifies the
guest operating system, hence the operating
system is aware of it being virtualized. XenServer
runs in ring 0, and the guest runs in ring 1. The
guest cannot directly access the hardware. The
virtual machine monitor tool used to configure
virtual machines is Citric XenCenter [7].

2.4 Xen Credit Scheduler

The default scheduler in XenServer is Credit
Scheduler. It works as follows: The scheduler
maintains weight and cap for each domain. The
weight is the amount of CPU time a domain can
get. The cap is the maximum amount of CPU that
can be consumed by the domain. The credit value
of every domain in calculated as:

credit_fair = (credit_total * weighti + weight_total –
1) / weight_total

Here, credit_fair is proportional share of CPU
resources.

credit_total is the sum of all domain’s credit.
weighti is domaini’s weight. weight_total is sum of
all domain’s weight [5].

There is a domain of every virtual machine. This
domain consists of all its processors called VCPUs.
There is a processor in each domain which
monitors the operation of all other processors. This
is called Virtual Bootstrap Processor (VBSP). All
remaining processors are called Virtual Application
Processors (VAP).

The credit scheduler assigns each VCPU to a PCPU.
Each PCPU maintains a queue of runnable VCPUs.
Each VCPU in the queue is given a priority. These
VCPUs are sorted by their priority and not by their
credit. The next VCPU to run is chosen from the
head of the queue. As a VCPU starts executing, its
accumulated credit value is consumed at a rate of
100 credits per 10ms. Each VCPU is given a time
slice of 30ms [3].

The priority levels defined are OVER, UNDER and
BOOST. When a new VCPU awakes, its priority is set
to BOOST, which is the highest priority, so that it is

Vishal Pawar et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

17

put at the head of running queue. OVER is the
lowest priority level, which is set when a VCPU
exceeds its fair share of CPU, otherwise its priority
is UNDER. This default scheduler is a non-
preemptive in nature.

3. RELATED WORK

Many research works have been done in the
performance field of the hypervisors. It is seen in
many research works that measure and compare
the performance overhead imposed on the guest
due to the presence of hypervisors.

“Diagnosing Performance Overheads in the Xen
Virtual

Machine Environment” [8] introduces Xenoprof, a
system-wide statistical profiling toolkit. It
quantified the overhead due to the presence of Xen
hypervisor by comparing it with a non-virtualized
environment. The reasons for this performance
overhead were found and ways to overcome them
were devised.

“A Performance Comparison of Hypervisors” [6] by
VMware also compared the performance of
VMware ESXi and XenServer from the viewpoint of
a large enterprise infrastructure. It was found that
ESXi is a better option than XenServer for a large
enterprise.

“A Component-Based Performance Comparison of
Four Hypervisors” [9] Compared the performances
of four hypervisors, VMware ESXi, Citrix XenServer,
Microsoft Hyper-V and KVM. The results showed
that no single hypervisor was best in all respects. In
fact, the performances of hypervisor largely depend
on the types of applications and the types of
resources available to it. Different types of
hypervisor may be best suited for different
workloads.

"Performance Evaluation of the CPU Scheduler in
XEN" [5] presented an evaluation of Xen Credit
scheduler performance under different conditions.
It presents running of Xen scheduler in different
VM configurations and different application. It
concluded that the CPU performance depends on
various scheduling parameters.

4. METHODOLOGY

For our purpose of performance comparison, we
took the following components: CPU, memory,
disk, and system uptime. These components were
analyzed in Microsoft Management Console
Windows Performance Monitor tool. We gave same
amount of resources to our guest operating system

in both the hypervisors. The performances were
analyzed by putting identical workload on both of
them.

If the workload is concurrent in some domain, then
all the VCPUs in this domain needs to be
synchronized to achieve concurrency. We call it
need_to_sync domain. Our proposed algorithm
must make sure that if the VBSP of a need_to_sync
domain is picked to run, then pick to run all VCPUs
in that domain and assign them to run on different
PCPUs in the same time slice.

For XenServer, we modified the Credit Scheduling
algorithm by adding a new priority level TURBO
which is greater than all other priority levels. A
domain is set to TURBO if the VBSP of a
need_to_sync domain is picked to run. There is a
global variable turbo_domain which keeps track of
the domains which are set to TURBO. All the VCPUs
of the turbo domain are set to priority TURBO, and
hence these are moved to the front of local run
queue. Each PCPU sort its local run queue
whenever a turbo domain is set.

4.1 Algorithm

Algorithm: Modified Credit Scheduler

Input: The current time

Output: Task to run next

Step 1: Check if the VCPU that is about to end its
time slice is runnable, i.e. if it still has positive
credit. If it is runnable, then insert it in the local run
queue again.

Step 2: Select the next VCPU from local run queue.

If it has TURBO priority then remove it from local
run queue and set it as the task to run next.

If it has positive credits available, and turbo domain
is not set then also remove it from local run queue
and set it as the task to run next.

If it does not have positive credit, i.e. has eaten its
credit, then check if there is more important task
on another PCPU using turbo_domain setting.

If it is, then set it as the task to run next. Otherwise,
set the next task from the top of local run queue as
the task to run next.

Step 3: Set the time slice as follows: If the current
VCPU is IDLE then set time slice negative (-1).
Otherwise set the default time slice.

Step 4: If task to run next is VBSP of the turbo
domain then, clear turbo domain setting.

Step 5: Check if next member of local run queue is

Vishal Pawar et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

18

a VBSP. If it is so, and if turbo domain is not set,
then set TURBO domain. Also perform the sorting
of running queues on all PCPUs so that the VCPUs
are sorted in descending order of their priorities,
such that VCPUs with TURBO priority comes to the
head of their local run queue.

Step 6: Return task to run next.

5. RESULT

5.1. Experimental Setup

The experiments were performed on both VMware
ESXi and Citrix XenServer one by one by installing
them on the same system. Putting workload and
measuring performance, both were done inside the
guest operating system. The proposed algorithm of
modified Credit Scheduling for Xen is implemented
in NetBeans as a simulation of virtual CPU
scheduling. The programming language used is
Java.

Hardware: The machine on which hypervisor run
has Intel Core i3-5010 CPU 2.10 GHz, and 4 GB
memory.

Software: The hypervisors used were VMware ESXi
6.0 and Citrix XenServer 6.5. The performance
monitoring tool is Windows Performance Monitor.
The IDE used is NetBeans IDE 8.2 with JDK 8.

Virtual Machine: The guest operating system that
is installed on the virtual machine is Windows
Server 2008 r2 (64-bit). The disk image size is 10 GB
and memory size is 4 GB. Two virtual CPUs were
assigned to the virtual machine.

5.2. Performance Analysis:

We analyzed the performance from the viewpoint
of guest operating system and concluded upon
which hypervisor performed well and why. CPU
performance is analyzed by setting a counter in
Windows Performance Monitor. The separate
analysis of CPU performance is as follows:

5.2.1. CPU Analysis:

The counter was set to processor time. We
analyzed the CPU utilization by putting general
workload on guest operating system in both
hypervisor. It was found that VMware performed
better than XenServer. It consumed lesser power
than XenServer in the same interval of time.

Xen Server

VMware

Figure 4: Comparison of Processor Performance of
VMware ESXi and XenServer (lower is better)

5.2.2. Modified algorithm analysis:

After running both algorithms with concurrent
workload, we found that the performance is almost
same with 1 and 2 virtual machines. This is
because, even if the workload is concurrent, both
VMs will execute their processes turn by turn.
There is a significant improvement in modified
algorithm when the number of VMs is further
increased. As shown in the graph, the wasted CPU
time increases rapidly in default Credit scheduling
algorithm of Xen for concurrent workload. While
our modified scheduling algorithm shows only
slight increase in CPU waste time even with up to
16 virtual machines.

Vishal Pawar et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

19

Figure 5: CPU time that is wasted with Credit

scheduler and modified scheduler (lower is better)

6. CONCLUSION

Virtualization technology is very important for the
Cloud Computing environments. Large enterprises
are benefitted from virtualization by reducing
hardware costs and increase efficiency and profit.
The hypervisor which is to be used at such large
scale should be chosen wisely, according to the
need and type of workload. In our experiments, we
took Windows Server 2008 r2 (64-bit) as the guest
operating system and executed it one by one on
VMware ESXi 6.0 and Citrix XenServer 6.5. It was
concluded that VMware outperforms XenServer.
The main factor in CPU performance is its
scheduling technique for virtual machines.

Our study could be useful for comparing and
deciding on which among these hypervisor gives
better performance. VMware becomes a better
choice for hypervisor in large enterprises. But
performance not only depends on kind of
hypervisor, but also on the kind of workload (e.g.
sequential, concurrent, parallel, etc.)

We proposed a new virtual CPU scheduling
algorithm for XenServer. It is the modification of its
default credit scheduler and optimized for
concurrent workload. But for parallel workload, the
default credit scheduler performs better.

More test could be performed by comparing them
on different kinds of workload and more hypervisor

could be added to make is study more extensive as
the future work. Also, the development of a virtual
CPU scheduling algorithm changes its technique
itself according to the kind of workload on the
virtual machines can be the direction for future
work.

REFERENCES

1. Soundararajan, Vijayaraghavan, and Kinshuk
Govil. "Challenges in building scalable
virtualized datacenter management." ACM
SIGOPS Operating Systems Review 44.4 (2010):
95-102.

2. Wood, Timothy, et al. "Profiling and modeling
resource usage of virtualized applications."
Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware.
Springer-Verlag New York, Inc., 2008.

3. Tseng, Chia-Ying, and Kang-Yuan Liu. "A
Modified Priority Based CPU Scheduling
Scheme for Virtualized Environment."
International Journal of Hybrid Information
Technology 6.2 (2013): 39-49.

4. Chen, Qian, et al. "On state of the art in virtual
machine security." Southeastcon, 2012
Proceedings of IEEE. IEEE, 2012.

5. Xu, Xianghua, et al. "Performance Evaluation of
the CPU Scheduler in XEN." Information Science
and Engineering, 2008. ISISE'08. International
Symposium on. Vol. 2. IEEE, 2008.

6. VMware, “A performance comparison of
hypervisors,” VMware White Paper, 2007.

7. Barham, Paul, et al. "Xen and the art of
virtualization." ACM SIGOPS operating systems
review. Vol. 37. No. 5. ACM, 2003.

8. Menon, Aravind, et al. "Diagnosing
performance overheads in the xen virtual
machine environment." Proceedings of the 1st
ACM/USENIX international conference on
Virtual execution environments. ACM, 2005.

9. Hwang, Jinho, et al. "A component-based
performance comparison of four hypervisors."
Integrated Network Management (IM 2013),
2013 IFIP/IEEE International Symposium on.
IEEE, 2013.

