
ISSN: 2393-8528

Contents lists available at www.ijicse.in

International Journal of Innovative Computer Science & Engineering

Volume 5 Issue 3; May-June 2018; Page No. 06-13

*Corresponding author: Manav Mehra

Pa
ge

6

Text Completion, Classification and Correction Using Different Types of Neural Networks

Manav Mehra and Riya Sahal

B.M.S College of Engineering

ABSTRACT
This article reviews the various methods used in the process of completing and correcting text on a word
based as well as a sentence based approach. Firstly, we look at the process of understanding the text from
scratch which requires the application of deep learning to text that facilitates the understanding the inputs at a
character level and other concepts related to abstract texts, and all this helps us in classifying texts. For the
above said purposes we use different types of Artificial Neural Networks which include Convolutional Neural
Networks and Recurrent Neural Networks. Both Convolutional and Recurrent Convolutional neural networks
can be individually used in the classification of texts and Recurrent Neural Networks along with
Convolutional Networks are used in the completion and correction. The result of using temporal and character
level Convolutional network for classification are also shown to be competitive to the results produced by
traditional techniques. The model for correction and completion enables both the processes to occur
simultaneously by ciphering the hidden representations at a character level and decoding the revised sequence.
Keywords: Machine Learning, Artificial Neural Network, Convolutional Neural Network, Recurrent Neural
Network, Computer Vision, Supervised Learning

1. Introduction

In recent years, deep learning has embarked
successfully on computer vision and language
modelling. The field of natural language
processing is shifting from statistical methods to
neural network methods.In natural language
processing, deep learning methods involves
learning word vector representations through
neural language models and arranging them to
perform classification.Word vector means
converting words into vectors, which deep
learning algorithms can understand, process and
produce a better understanding of natural
language. Convolutional neural networks (CNN) is
a deep, feed-forward artificial neural networks
used in computer vision. It has been successful in
semantic parsing , search query retrieval sentence
modeling and various other NLP tasks. Recurrent
Neural Network (RNN), unlike feed-forward
networks, make use of their internal state to
perform a sequence of operation on the input
sequence which enables it to perform tasks such as
unsegmented, connected handwriting recognition
or speech recognition. Analogous to the human
brain, being super efficient in understanding texts
which is achieved through years of training, RNN
is formulated upon a similar concept. Text
classification forms a base for many applications,
such as sentiment analysis,web searching and

information filtering. The RNN inspects a text
word by word and making a note of the semantics
of the previously entered text in a fixed-sized
hidden layer. It has the capability to capture
provisional information but, RNN being a biased-
model, later words tend to weigh more than earlier
words and thereby, reducing the efficiency if used
to analyze the semantics of a whole document
where key words can appear anywhere than in the
end. To overcome the problem of RNN,
Convolution Neural Network, an unbiased network
is used to tackle an NLP task which uses a max-
pooling layer to determine different phrases in a
text. But in a simple CNN, kernels such as fixed
windows are used which pose a difficulty to
predicting the window sizes, selecting a large
window would make it difficult to train the neural
network and using a small size might result in a
loss of important information. Both CNN and
RNN have a time complexity of O(n).To address
the confinement of the above models, a Recurrent
Convolutional Neural Network (RCNN) and apply
it to text classification. A bidirectional recurrent
network is used as it introduces less noise
compared to CNN to capture contextual
information. The model can hold a bigger scope of
the word requesting when learning portrayals of
writings. Max-pooling layer automatically decides
features which an important role in text

http://www.ijicse.in/

 Manav Mehra r et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

7

classification and hence, capturing major features
in the text. As this model combines both, recurrent
structure and max-pooling layer, it deploys the
advantages of both recurrent neural and
convolution neural models. It also exhibits a time
complexity of O(n) which depends on length of the
text. Touch-screen mobile text interfaces are
omnipresent and so is text error completion and
correction which cannot be tackled using the
traditional language models without the assistance
of deep repetitive error patterns in training data.
Error patterns depend on the user’s typing style
and native language, and the various aspects of the
interface such as the design, text entry method and
vocabulary restriction. Recurrent neural network
(RNN) have been successful in a wide variety of
sequence problem and efficient in modelling the
current natural language and hence, recurrent
neural networks, long short-term memory
networks and gated recurrent neural networks form
the backbone for language modelling and machine
translation and more.

2. Understanding and Classification

We discuss two different approaches to this
process the first one uses the convolutional neural
network and the other uses recurrent convolutional
neural network.

2.1 Convolutional Neural Network Design.

This section gives an introduction for the design of
Convolutional Networks that is used in the process
of understanding and classification. The modular
design obtains its gradient by back propagation
and performs optimisation.

Key Modules Temporal Convolution module,
being the main component, computes one
dimensional convolution.A discrete input function,
assumed to be, g(x) ∈ [1, l] → R and a discrete
kernel function, assumed to be, f(x) ∈ [1, k] → R.
The convolution h(y) ∈ [1, b(l − k)/dc + 1] → R
between f(x) and g(x) with stride d is defined as,

where c = k − d + 1 is an offset constant. Just as in
traditional convolutional networks in vision, the
module is parameterized by a set of such kernel
functions fij (x) (i = 1, 2, . . . , m and j = 1, 2, . . . ,
n) which we call weights, on a set of inputs gi(x)
and outputs hj (y). We call each gi (or hj) input
(or output) features, and m (or n) input (or output)
feature size. The outputs hj (y) is obtained by a
sum over i of the convolutions between gi(x) and
fij (x). One key module that helped us to train
deeper models is temporal max-pooling. It is the 1-

D version of the max-pooling module used in
computer vision. Given a discrete input function
g(x) ∈ [1, l] → R, the max-pooling function h(y)
∈ [1, b(l − k)/dc + 1] → R of g(x) is defined as

where c = k − d + 1 is an offset constant. This very
pooling module enabled us to train ConvNets
deeper than 6 layers, where all others fail. The
analysis by might shed some light on this. The
non-linearity used in our model is the rectifier or
thresholding function h(x) = max{0, x}, which
makes our convolutional layers similar to rectified
linear units (ReLUs). The algorithm used is
stochastic gradient descent (SGD) with a mini
batch of size 128, using momentum 0.9 and initial
step size 0.01 which is halved every 3 epoches for
10 times. Each epoch takes a fixed number of
random training samples uniformly sampled across
classes. This number will later be detailed for each
dataset separately. The implementation is done
using Torch 7.

Character Quantization - Our models
acknowledge a succession of encoded characters
as information. The encoding is finished by
endorsing a letters in order of size m for the
information dialect, and after that quantize each
character utilizing 1-of-m encoding (or on the
other hand "one-hot" encoding). At that point, the
succession of characters is changed to an
arrangement of such m estimated vectors with
settled length l0. Any character surpassing length
l0 is overlooked, and any characters that are not in
the letter set including clear characters are
quantized as each of the zero vectors. The
character quantization arrange is in reverse so the
most recent perusing on characters is constantly
set close to the start of the yield, making it simple
for completely associated layers to connect
weights with the most recent perusing. The letters
in order utilized as a part of the greater part of our
models comprises of 70 characters, including 26
English letters, 10 digits, 33 different characters
and the new line character.
The non-space characters are:

abcdefghijklmnopqrstuvwxyz0123456789 -
,;.!?:’’’/\|_@#$%ˆ&*˜‘+-=<>()[]{}

Model Design - For our requirements we design
two convolutional networks having difference in
their size, large and small, and both of them have
the same configuration that consists of 9 layers
deep having 6 convolutional layers along with 3
fully connected layers as shown,

 Manav Mehra r et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

8

Figure 1:

The input has number of highlights equivalent to
70 because of our character quantization strategy,
and the information full length is 1014. It appears
that 1014 characters could as of now catch a large
portion of the writings of intrigue. We additionally
embed 2 dropout modules in the middle of the 3
completely associated layers to regularize. They
have dropout likelihood of 0.5. Table 1 records the
designs for convolutional layers, and table 2
records the setups for completely associated
(direct) layers.

Table 1:

Table 2

For various issues the information lengths might
be extraordinary (for instance for our situation l0 =
1014), as are the casing lengths. From our model
outline, it is anything but difficult to realize that
given information length l0, the yield outline
length after the last convolutional layer (yet before
any of the completely associated layers) is l6 = (l0
− 96)/27. This number duplicated with the casing
size at layer 6 will give the information
measurement the principal completely associated
layer acknowledges.

2.2 Recurrent Convolutional Neural Network
Design.
We propose a deep neural model to catch the
semantics of the content of text. The following
figure shows the network structure of the model.
The contribution of the system is an archive D,
which is an arrangement of words t1, t2 . . . the
output of the network contains class elements. We
use p(k|D, θ) to denote the probability of the
document being class k, where θ is the parameters
in the network.

Figure 2: The structure of the recurrent neural

network

Word Representation Learning - The
combination of word and its context gives a word
which helps in giving a clear meaning of the word.
The bidirectional nature of the recurrent neural
network captures the meaning of the word.

We characterize Pl(ti) as the left setting of word ti
and Pr(ti) as the right setting of word ti. Pl(ti) and
Pr(ti) are dense vectors with |t| as real value
elements. The left-side context Pl(ti) of word ti is
found using equation (a), where s(ti−1) is the word
embedding of word (ti−1), which is also a dense
vector with |s| as real value elements. Pl(ti−1) is
the left-side setting of the previous word wi−1.
The left-side setting for the first word in any
archive uses the same shared parameters Pl(t1).
M(l) is a matrix that transforms the hidden layer
(context) into the next hidden layer. M(sl) is a
matrix that is used to combine the semantic of the
current word with the next word’s left context. F is
a non-linear activation function. The right-side
context Pr(ti) is calculated in a similar manner
using equation (b). The right-side contexts of the
last word in a document share the parameters
Pr(tn).

Pl(ti) = F(M(l)Pl(ti−1) + M(sl)e(ti−1)) ---

(a)

Pr(ti) = F(M(r)Pr(ti+1) + M(sr)e(ti+1)) ---(b)

 Manav Mehra r et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

9

As appeared in equations (a) and (b), the setting
vector catches the semantics of all left-and right-
side settings.

For instance, in Figure 1,Pl(t7) encodes the
semantics of the left-side setting "walk around the
South" alongside every single past content in the
sentence, and Pr(t7) encodes the semantics of the
right-side setting "bears a . . . ". At that point, we
characterize the portrayal of word t7 in equation
(c), which is the link of the left-side setting vector
Pl(ti), the word implanting s(ti) and the right-side
setting vector Pr(ti).In this way, utilizing this
logical data, our model might be better ready to
disambiguate the importance of the word ti in
contrast with traditional neural models that lone
utilize a settled window (i.e., they just utilize
fractional data about writings).

Xi = [Pl(ti); s(ti); Pr(ti)]--- (c)

The intermittent structure can acquire all Pl in a
forward sweep of the content and Pr in a
regressive output of the content. The time
complexity is O(n). After we obtain the
representation Xi of the word ti, we apply a straight
change together with the tanh actuation capacity to
Xi and send the outcome to the next layer.

Zi
(2) =tanh (XiM(2) + B(2)) --- (d)

Zi
(2) is a latent semantic vector, in which each

semantic factor will be investigated to decide the
most helpful factor for representing the content.

Text Representation Learning: The
convolutional neural network represents text. From
the perspective of convolutional neural networks,
the recurrent structure we previously mentioned is
the convolutional layer.

When all of the representations of words are
calculated, we apply a max-pooling layer.

The max function is an element-wise function. The
k-th element of 𝑦𝑦(3) is the maximum in the k-th
elements of 𝑦𝑦𝑦𝑦

(2).

The pooling layer changes over writings with
different lengths into a settled length vector. With
the pooling layer, the data is caught in the whole
content. There are different kinds of pooling
layers, for example, average pooling layers .
Average pooling isn't made to utilize on the
grounds that lone a couple of words and their mix
are helpful for catching the importance of any
file.The max-pooling layer endeavors to locate the
most essential dormant semantic factors in the
archive. The pooling layer uses the yield of the

repetitive structure as the information. The time
complexity of the pooling layer is O(n).The
general model is a course of the recurrent structure
and a max-pooling layer, accordingly, the time
many-sided quality of the model is still O(n).

The last piece of the model is a yield layer. Like
conventional neural systems, it is characterized as
𝑦𝑦(4) = 𝑦𝑦(4)𝑦𝑦(3) + 𝑦𝑦(4)

Finally, the softmax function is applied to 𝑦𝑦(4). It
can convert the output numbers into probabilities.

3. Correction and Completion

3.1 Sequence-to-Sequence model

Sequence-to-sequence models have demonstrated
huge potential in enhancing vanilla repetitive
system for input-yield progression mapping
endeavors, machine translation. An info side
encoder catches the portrayals in the information,
while the decoder gets the portrayal from the
encoder alongside the information and yields a
relating mapping to the objective dialect. This
structural set-up appears to normally fit the
administration of mapping noisy contribution to
denoised output, where the correction expectation
can be dealt with as an alternate dialect and the
task. The drawback of this mapping architecture is
the fixed input and output sizes and the basic
sequence-to-sequence model cannot create (test)
new content or anticipate the following word. It is
an essential component for keyboard decoder to
precisely anticipate intended completion. The
correction and completion can be achieved by
having a separate corrector network as an encoder
and an implicit dialect model as a decoder in a
sequence-to-sequence architecture that trains end-
to-end. A sequence-to-sequence text Correction
and Completion Encoder Decoder Attention
network (CCEAD) is outlined in the architectural
diagram in Figure 1. This model trains a
combination of dataset to capture the noise to
correct patterns along with learning the implicit
dialect model. The main points about the model
are:

1. A sequence to sequence architecture deployed
with a convolution neural network(CNN) -
gated recurrent unit (GRU) encoder based on
character is used to catch error representation
in noisy text.

2. The decoder in the model is a gated recurrent
unit in light of words, it gets the starting state

 Manav Mehra r et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

10

from the encoder and behaves like a dialect
model.

3. The model learns conversational content
adjustment and culminations for use in any
such content based framework and is
freethinker to the input.

Figure 3:

3.2 Model Description

The general design of our model is outlined in Fig
1. Our model has the comparative basic design of
the sequence-to-sequence models utilized as a part
of machine interpretation. Sequence learning
issues are trying as Deep Neural Networks (DNN)
require the dimensionality of the information
sources and focuses to be settled. Further, issues
emerge if the data sources are character linked
representations while the results are word level
representations. Hence, in our model the encoder
is made out of both recurrent and feed-forward
units and works at a character level though the
decoder works at a word level. Our model is made
on two primary modules: Error Corrector
Encoding Layer and Language Decoding Layer.

Character Error Correcting Encoding Layer -
● Character Error Context Understanding

Recurrent Neural Networks, are extremely
efficient in capturing contextual patterns. For a
sequence of inputs (x1, ..., xT), a classical RNN
computes a sequence of outputs (y1, ..., yT)
iteratively using the following equation:

The power of RNNs lie in the ease with which it
can map input sequence to target sequence, when
the alignment between sequence is known ahead
of time. In case of unaligned sequences, to

circumvent the problem, the input and target
sequences are padded to fixed length vectors, then
one RNN is used as the encoder to map the padded
input vector to a different fixed sized target vector
using another RNN. However, RNNs struggle to
cope with long term dependency in the data due to
vanishing gradient problem. This problem is
solved using Long Short Term Memory (LSTM)
recurrent neural networks. However, for purposes
of error correction, medium to short term
dependencies are more useful. Therefore, our
candidate for contextual error correction encoding
layer is the Gated Recurrent Network (GRU)
which has similar performance to that of LSTM.
We evaluated a vanilla sequence to sequence
model that we trained on exhaustive set of
synthetic noisy to true mappings, without any
context. The models could not generalize to all
types of errors especially insertion and deletion.
The example in the following table,

Table 3:

Highlights the importance of context for each of
the sentences that will require different
corrections. Gated Recurrent Unit (GRU) are the
fundamental units of our model. In GRU, the input
and the hidden states are of the same size that
enables better generalization. The main motivation
in using GRU over Long Short Term Memory
networks (LSTM) as our fundamental unit is the
size equality between input and state which is not
the case with LSTM. Also, GRU and LSTM have
exhibited similar performance across many tasks.
If the input vector is x representing a character,
and the current state vector is s, then the output is
given as in Kaiser et. al.:

In the GRU equations above, W∗ s and the U ∗ s
are weight matrices with respect to the gates and
hidden state while the b ∗ s are the bias vectors;
where both of these type of parameters are learnt
by the model. u and r are the gates as their
elements have values between [0, 1] - u is the

 Manav Mehra r et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

11

update gate whereas r is the reset gate. At every
time step in the recurrent neural network, a GRU
unit passes the result as the new state to the next
GRU and to the output of the current time step.
● Character Error Representation

The convolutional layers are good at capturing the
representations for insertion and deletion spelling
errors. Both the GRU and the CNN are character
based. For a sequence of, the input to the GRU and
the CNN is simultaneous and in the form of a
concatenated and padded fixed sized vector
corresponding to the sequence length. CNN
architecture applied to natural language processing
typically model temporal rather than spatial
convolutions. The characters considered in our
model consists of 68 characters, including 26
English letters, padding symbol for aligning the
sequences across batches of data input to our
model, beginning of sequence marker and end of
sequence marker among other special characters as
listed below:

{0: ’\t’, 1: ’\n’, 2: ’\r’, 3: ’ ’, 4: ’!’, 5: ’"’, 6: ’#’, 7:
’\$’, 8: ’\%’, 9: ’\&’, 10: "’", 11: ’(’, 12: ’)’, 13:
’*’, 14: ’+’, 15: ’,’, 16: ’.’, 17: ’/’, 18: ’0’, 19: ’1’,
20: ’2’, 21: ’3’, 22: ’4’, 23: ’5’, 24: ’6’, 25: ’7’, 26:
’8’, 27: ’9’, 28: ’:’, 29: ’;’, 30: ’=’, 31: ’>’, 32: ’?’,
33: ’@’, 34: ’[’, 35: ’]’, 36: ’_’, 37: ’‘’, 38: ’a’, 39:
’b’, 40: ’c’, 41: ’d’, 42: ’e’, 43: ’f’, 44: ’g’, 45: ’h’,
46: ’i’, 47: ’j’, 48: ’k’, 49: ’l’, 50: ’m’, 51: ’n’, 52:
’o’, 53: ’p’, 54: ’q’, 55: ’r’, 56: ’s’, 57: ’t’, 58: ’u’,
59: ’v’, 60: ’w’, 61: ’x’, 62: ’y’, 63: ’z’, 64: ’{’,
65: ’|’, 66: ’}’, 67: ’’, 68: ’’}

Suppose the length of the character sequence is
given by l for the kth word wk, Vc is the
vocabulary of characters and Ec is the character
embedding matrix of embedding dimension d such
that Ec ∈ R |Vc|×d . If word wk is made up of
characters [c1, c2, . . . , cl], then the character
level representation for word wk is V k c ∈ R l×d
. Central to temporal convolutions is 1D
convolution. For input function g(x) ∈ [1, l] → R
and kernel function f(x) ∈ [1, k] → R, the
convolution is h(y) ∈ [1, b(l − k + 1)/dc] → R,
for stride d is defined as:

where c is the offset constant given by c = k − d +
1, and k is the width of the filter. There will be
multiple filters of particular widths to produce the
feature map, which is then concatenated and
flattened for further processing. Here, sequence
length signifies how many characters define the
context for the error for the GRU and is about 5
characters or time steps. This sequence size will

get adjusted to fixed sized length with padding to
accommodate the shorter sequences. The number
of neurons or cell size in the GRU is set to 256.
The CNN consists of 5 filters with sizes varying in
the range of [2, 3, 4]. The batch size indicating the
number of instances to train on per batch is fixed
to 100. The character vocabulary size is 30
including the character used for padding, newline,
space, and start of sequence. The number of layers
in the GRU is fixed to 1.

Word Level Decoder -

The decoder is also a GRU recurrent network that
does word based processing. The output from the
encoder is a linear transformation between the
final hidden state of the char based GRU in the
encoder and the output of the fully connected layer
of the CNN. This state is then used to initialize the
state of the decoder. The decoder sees as input a
padded fixed length vector of integer indexes
corresponding to the word in the vocabulary. The
input sequence is a sequence of words prefixed
with the start token. The sequence length is set to 5
which will then be padded for shorter sequences to
generate fixed sized sequence. The vocabulary size
for word based decoder is only about 3000 words.
The encoder-decoder is trained end-to-end having
a combined char-word based representation on the
encoder and decoder side respectively. The size of
the GRU cell is 256 with one layer.

Context based Attention

The decoder constructs the context by attending to
the encoder states according to attention
mechanisms . If the context is given by ci ,
decoder state, previous encoder states by hi by
si−1, then for the sequence i, . . . , T:

Let 𝜐𝜐𝑦𝑦 be the fixed size vocabulary of words. The
decoder in our model behaves like an implicit
language model by specifying a conditional
distribution over 𝑦𝑦𝑦𝑦+1 consistent with the
sequence seen so far 𝑦𝑦1:𝑦𝑦 = [𝑦𝑦1, . . . , 𝑦𝑦𝑦𝑦]. The
GRU recurrent unit achieves this by the
application of the affine transformation of the
hidden state followed by projection onto the word
vocabulary by performing a softmax:

 Manav Mehra r et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

12

where 𝜐𝜐𝑦𝑦 is the j-th column of 𝑦𝑦𝑦𝑦
𝑦𝑦 × |𝑦𝑦|𝑦𝑦 , known

as the output embedding and b is the bias. Similar
to our encoder side character embedding, our
decoder takes word embeddings as inputs, for
word 𝑦𝑦𝑦𝑦 at time t, 𝑦𝑦𝑦𝑦 = k, the input to the
decoder is the k column of the word embedding
matrix 𝑦𝑦𝑦𝑦∈𝑦𝑦|𝑦𝑦|𝑦𝑦× 𝑦𝑦. During optimization the
loss is evaluated on the output of the decoder at the
word level. The loss function is the cross-entropy
loss per time step summed over the output
sequence y:

5. Conclusion

In this paper, we review the various different
techniques that can be used for the purpose of text
classification, completion and correction. In the
model we propose to use a recurrent convolutional
network for text classification, in which our model
captures contextual information with recurrent
structure and constructs the representation of text.
For completion and correction we suggest a
combination of recurrent and convolutional neural
sequence-to-sequence model. The models used
traditionally require a large number of words,
almost billions, for training and also take a huge
amount of time to train, whereas, our model
requires only 50000 words and can be trained
within a day. The combination of the above
techniques can help deliver a predictive keyboard
technology that is efficient and effective.

References

1. Bengio, R. Ducharme, P. Vincent. 2003.
Neural Probabilistic Language Model. Journal
of Machine Learning Research.

2. Dong, F. Wei, S. Liu, M. Zhou, K. Xu. 2014.
A Statistical Parsing Framework for Sentiment
Classification. CoRR, abs/1401.6330.

3. Hinton, N. Srivastava, A. Krizhevsky, I.
Sutskever, R. Salakhutdinov. 2012. Improving
neural networks by preventing co-adaptation
of feature detectors. CoRR, abs/1207.0580.

4. Kalchbrenner, E. Grefenstette, P. Blunsom.
2014. A Convolutional Neural Network for
Modelling Sentences. In Proceedings of ACL
2014.

5. Shen, X. He, J. Gao, L. Deng, G. Mesnil.
2014. Learning Semantic Representations
Using Convolutional Neural Networks for
Web Search. In Proceedings of WWW 2014.

6. Yoon Kim, Convolutional Neural Networks
for Sentence Classification.

7. Boureau, Y-L, Bach, Francis, LeCun, Yann,
and Ponce, Jean. Learning mid-level features
for recognition. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE
Conference on, pp. 2559–2566. IEEE, 2010a.

8. dos Santos, Cicero and Gatti, Maira. Deep
convolutional neural networks for sentiment
analysis of short texts. In Proceedings of
COLING 2014, the 25th International
Conference on Computational Linguistics:
Technical Papers, pp. 69–78, Dublin, Ireland,
August 2014. Dublin City University and
Association for Computational Linguistics.

9. Frome, Andrea, Corrado, Greg S, Shlens, Jon,
Bengio, Samy, Dean, Jeff, Mikolov, Tomas, et
al. Devise: A deep visual-semantic embedding
model. In Advances in Neural Information
Processing Systems, pp. 2121–2129, 2013.

10. Krizhevsky, Alex, Sutskever, Ilya, and Hinton,
Geoffrey E. Imagenet classification with deep
convolutional neural networks. In NIPS, pp.
1106–1114, 2012.

11. Xiang Zhang,Yann LeCun, Text
Understanding From Scratch.

12. Aggarwal, C. C., and Zhai, C. 2012. A survey
of text classification algorithms. In Mining text
data. Springer. 163–222.

13. Baroni, M.; Dinu, G.; and Kruszewski, G.
2014. Don’t count, predict! a systematic
comparison of context-counting vs. context-
predicting semantic vectors. In ACL, 238–247.

14. Bengio, Y.; Ducharme, R.; Vincent, P.; and
Jauvin, C. 2003. A Neural Probabilistic
Language Model. JMLR 3:1137–1155.

15. Siwei Lai, Liheng Xu, Kang Liu, Jun Zhao,
Recurrent Convolutional Neural Networks for
Text Classification. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial
Intelligence.

16. K. Vertanen, H. Memmi, J. Emge, S. Reyal,
and P. O. Kristensson, “Velocitap:
Investigating fast mobile text entry using
sentence-based decoding of touchscreen
keyboard input,” in Proceedings of the 33rd
Annual ACM Conference on Human Factors
in Computing Systems, ser. CHI ’15. New
York, NY, USA: ACM, 2015, pp. 659–668.
[Online]. Available:
http://doi.acm.org/10.1145/2702123.2702135.

17. P. Rodriguez, J. Wiles, and J. L. Elman, “A
recurrent neural network that learns to count,”
Connection Science, vol. 11, no. 1, pp. 5–40,
1999.

18. S. Hochreiter and J. Schmidhuber, “Long
short-term memory,” Neural computation, vol.
9, no. 8, pp. 1735–1780, 1997.

19. I. Sutskever, O. Vinyals, and Q. V. Le,
“Sequence to sequence learning with neural

 Manav Mehra r et al, International Journal of Innovative Computer Science & Engineering

© 2018 All Rights Reserved.

Pa
ge

13

networks,” in Advances in neural information
processing systems, 2014, pp. 3104–3112.

20. Y. Kim, Y. Jernite, D. Sontag, and A. M.
Rush, “Character-aware neural language
models,” arXiv preprint arXiv:1508.06615,
2015.

21. Shaona Ghosh, Per Ola Kristensson, Neural
Networks for Text Correction and Completion
in Keyboard Decoding. In Journal of Latex
Class Files, VOL. 14, No. 8, August 2015

