
ISSN: 2393-8528 

 

 

Contents lists available at www.ijicse.in 

International Journal of Innovative Computer Science & Engineering 

Volume 5 Issue 3; May-June 2018; Page No. 06-13 
 

 

*Corresponding author: Manav Mehra 

Pa
ge

6 

Text Completion, Classification and Correction Using Different Types of Neural Networks 
 

Manav Mehra and Riya Sahal 

B.M.S College of Engineering 

ABSTRACT 
This article reviews the various methods used in the process of completing and correcting text on a word 
based as well as a sentence based approach. Firstly, we look at the process of understanding the text from 
scratch which requires the application of deep learning to text that facilitates the understanding the inputs at a 
character level and other concepts related to abstract texts, and all this helps us in classifying texts. For the 
above said purposes we use different types of Artificial Neural Networks which include Convolutional Neural 
Networks and Recurrent Neural Networks. Both Convolutional and Recurrent Convolutional neural networks 
can be individually used in the classification of texts and Recurrent Neural Networks along with 
Convolutional Networks are used in the completion and correction. The result of using temporal and character 
level Convolutional network for classification are also shown to be competitive to the results produced by 
traditional techniques. The model for correction and completion enables both the processes to occur 
simultaneously by ciphering the hidden representations at a character level and decoding the revised sequence.   
Keywords: Machine Learning, Artificial Neural Network, Convolutional Neural Network, Recurrent Neural 
Network, Computer Vision, Supervised Learning 

1. Introduction 

In recent years, deep learning has embarked 
successfully on computer vision and language 
modelling. The field of natural language 
processing is shifting from statistical methods to 
neural network methods.In natural language 
processing, deep learning methods involves 
learning word vector representations through 
neural language models and arranging them to 
perform classification.Word vector means 
converting words into vectors, which deep 
learning algorithms can understand, process and 
produce a better understanding of natural 
language. Convolutional neural networks (CNN) is 
a deep, feed-forward artificial neural networks 
used in computer vision. It has been successful in 
semantic parsing , search query retrieval sentence 
modeling  and various other NLP tasks.  Recurrent 
Neural Network ( RNN), unlike feed-forward 
networks, make use of  their internal state to 
perform a sequence of operation on the input 
sequence which enables it to perform tasks such as 
unsegmented, connected handwriting recognition 
or speech recognition. Analogous to the human 
brain, being super efficient in understanding texts 
which is achieved through years of training, RNN 
is formulated upon a similar concept. Text 
classification forms a base for many applications, 
such as sentiment analysis,web searching and 

information filtering. The RNN inspects a text 
word by word and making a note of the semantics 
of the previously entered text in a fixed-sized 
hidden layer. It has the capability to capture 
provisional information but, RNN being a biased-
model, later words tend to weigh more than earlier 
words and thereby, reducing the efficiency if used 
to analyze the semantics of a whole document 
where key words  can appear anywhere than in the 
end. To overcome the problem of RNN, 
Convolution Neural Network, an unbiased network 
is used to tackle an NLP task which uses a max-
pooling layer to determine different phrases in a 
text. But in a simple CNN, kernels such as fixed 
windows are used which pose a difficulty to 
predicting the window sizes, selecting a large 
window would make it difficult to train the neural 
network and using a small size might result in a 
loss of important information. Both CNN and 
RNN have a time complexity of O(n).To address 
the confinement of the above models, a Recurrent 
Convolutional Neural Network (RCNN) and apply 
it to text classification. A bidirectional recurrent 
network is used as it introduces less noise 
compared to CNN to capture contextual 
information. The model can hold a bigger scope of 
the word requesting when learning portrayals of 
writings. Max-pooling layer automatically decides 
features which an important role in text 

http://www.ijicse.in/


 Manav Mehra r et al, International Journal of Innovative Computer Science & Engineering 
 
 

© 2018 All Rights Reserved. 

Pa
ge

7 

classification and hence, capturing major features 
in the text. As this model combines both, recurrent 
structure and max-pooling layer, it deploys the 
advantages of both recurrent neural and 
convolution neural models. It also exhibits a time 
complexity of O(n) which depends on length of the 
text. Touch-screen mobile text interfaces are 
omnipresent and so is text error completion and 
correction which cannot be tackled using the 
traditional language models without the assistance 
of deep repetitive error patterns in training data. 
Error patterns depend on the user’s typing style 
and native language, and the various aspects of the 
interface such as the design, text entry method and 
vocabulary restriction. Recurrent neural network 
(RNN) have been successful in a wide variety of 
sequence problem and efficient in modelling the 
current natural language and hence, recurrent 
neural networks, long short-term memory 
networks and gated recurrent neural networks form 
the backbone for language modelling and machine 
translation and more. 

2. Understanding and Classification 

We discuss two different approaches to this 
process the first one uses the convolutional neural 
network and the other uses recurrent convolutional 
neural network. 

2.1 Convolutional Neural Network Design. 

This section gives an introduction for the design of 
Convolutional Networks that is used in the process 
of understanding and classification. The modular 
design obtains its gradient by back propagation 
and performs optimisation. 

Key Modules Temporal Convolution module, 
being the main component, computes one 
dimensional convolution.A discrete input function, 
assumed to be, g(x) ∈ [1, l] → R and a discrete 
kernel function, assumed to be,  f(x) ∈ [1, k] → R. 
The convolution h(y) ∈ [1, b(l − k)/dc + 1] → R 
between f(x) and g(x) with stride d is defined as, 

 
where c = k − d + 1 is an offset constant. Just as in 
traditional convolutional networks in vision, the 
module is parameterized by a set of such kernel 
functions fij (x) (i = 1, 2, . . . , m and j = 1, 2, . . . , 
n) which we call weights, on a set of inputs gi(x) 
and outputs hj (y). We call each gi (or hj ) input 
(or output) features, and m (or n) input (or output) 
feature size. The outputs hj (y) is obtained by a 
sum over i of the convolutions between gi(x) and 
fij (x). One key module that helped us to train 
deeper models is temporal max-pooling. It is the 1-

D version of the max-pooling module used in 
computer vision. Given a discrete input function 
g(x) ∈ [1, l] → R, the max-pooling function h(y) 
∈ [1, b(l − k)/dc + 1] → R of g(x) is defined as  

 
where c = k − d + 1 is an offset constant. This very 
pooling module enabled us to train ConvNets 
deeper than 6 layers, where all others fail. The 
analysis by might shed some light on this. The 
non-linearity used in our model is the rectifier or 
thresholding function h(x) = max{0, x}, which 
makes our convolutional layers similar to rectified 
linear units (ReLUs). The algorithm used is 
stochastic gradient descent (SGD) with a mini 
batch of size 128, using momentum 0.9 and initial 
step size 0.01 which is halved every 3 epoches for 
10 times. Each epoch takes a fixed number of 
random training samples uniformly sampled across 
classes. This number will later be detailed for each 
dataset separately. The implementation is done 
using Torch 7. 

Character Quantization - Our models 
acknowledge a succession of encoded characters 
as information. The encoding is finished by 
endorsing a letters in order of size m for the 
information dialect, and after that quantize each 
character utilizing 1-of-m encoding (or on the 
other hand "one-hot" encoding). At that point, the 
succession of characters is changed to an 
arrangement of such m estimated vectors with 
settled length l0. Any character surpassing length 
l0 is overlooked, and any characters that are not in 
the letter set including clear characters are 
quantized as each of the zero vectors. The 
character quantization arrange is in reverse so the 
most recent perusing on characters is constantly 
set close to the start of the yield, making it simple 
for completely associated layers to connect 
weights with the most recent perusing. The letters 
in order utilized as a part of the greater part of our 
models comprises of 70 characters, including 26 
English letters, 10 digits, 33 different characters 
and the new line character. 
The non-space characters are: 

abcdefghijklmnopqrstuvwxyz0123456789 -
,;.!?:’’’/\|_@#$%ˆ&*˜‘+-=<>()[]{} 

Model Design - For our requirements we design 
two convolutional networks having difference in 
their size, large and small, and both of them have 
the same configuration that consists of 9 layers 
deep having 6 convolutional layers along with 3 
fully connected layers as shown, 
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Figure 1: 

The input has number of highlights equivalent to 
70 because of our character quantization strategy, 
and the information full length is 1014. It appears 
that 1014 characters could as of now catch a large 
portion of the writings of intrigue. We additionally 
embed 2 dropout modules in the middle of the 3 
completely associated layers to regularize. They 
have dropout likelihood of 0.5. Table 1 records the 
designs for convolutional layers, and table 2 
records the setups for completely associated 
(direct) layers. 

Table 1: 
 

 

Table 2 
 

 
For various issues the information lengths might 
be extraordinary (for instance for our situation l0 = 
1014), as are the casing lengths. From our model 
outline, it is anything but difficult to realize that 
given information length l0, the yield outline 
length after the last convolutional layer (yet before 
any of the completely associated layers) is l6 = (l0 
− 96)/27. This number duplicated with the casing 
size at layer 6 will give the information 
measurement the principal completely associated 
layer acknowledges. 

2.2 Recurrent Convolutional Neural Network 
Design. 
We propose a deep neural model to catch the 
semantics of the content of text. The following 
figure shows the network structure of the model.  
The contribution of the system is an archive D, 
which is an arrangement of words t1, t2 . . . the 
output of the network contains class elements. We 
use p(k|D, θ) to denote the probability of the 
document being class k, where θ is the parameters 
in the network. 

 
 
Figure 2: The structure of the recurrent neural 

network 

Word Representation Learning - The 
combination of word and its context gives a word 
which helps in giving a clear meaning of the word. 
The bidirectional nature of the recurrent neural 
network captures the meaning of the word.  
     

We characterize Pl(ti) as the left setting of word ti 
and Pr(ti) as the right setting of word ti. Pl(ti) and 
Pr(ti) are dense vectors with |t| as real value 
elements. The left-side context Pl(ti) of word ti is 
found using equation (a), where s(ti−1) is the word 
embedding of word (ti−1), which is also a dense 
vector with |s| as real value elements. Pl(ti−1) is 
the left-side setting of the previous word wi−1. 
The left-side setting for the first word in any 
archive uses the same shared parameters Pl(t1). 
M(l) is a matrix that transforms the hidden layer 
(context) into the next hidden layer. M(sl) is a 
matrix that is used to combine the semantic of the 
current word with the next word’s left context. F is 
a non-linear activation function. The right-side 
context  Pr(ti)  is calculated in a similar manner 
using equation (b). The right-side contexts of the 
last word in a document share the parameters  
Pr(tn). 

Pl(ti) = F(M(l)Pl(ti−1) + M(sl)e(ti−1)) --- 

(a) 

Pr(ti) = F(M(r)Pr(ti+1) + M(sr)e(ti+1)) ---(b) 
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As appeared in equations (a) and (b), the setting 
vector catches the semantics of all left-and right-
side settings.  

For instance, in Figure 1,Pl(t7)  encodes the 
semantics of the left-side setting "walk around the 
South" alongside every single past content in the 
sentence, and Pr(t7) encodes the semantics of the 
right-side setting "bears a . . . ". At that point, we 
characterize the portrayal of word t7 in equation 
(c), which is the link of the left-side setting vector 
Pl(ti), the word implanting s(ti) and the right-side 
setting vector  Pr(ti).In this way, utilizing this 
logical data, our model might be better ready to 
disambiguate the importance of the word ti   in 
contrast with traditional neural models that lone 
utilize a settled window (i.e., they just utilize 
fractional data about writings). 

Xi = [Pl(ti); s(ti); Pr(ti)]--- (c)  

The intermittent structure can acquire all Pl in a 
forward sweep of the content and Pr   in a 
regressive output of the content. The time 
complexity is O(n). After we obtain the 
representation Xi of the word ti, we apply a straight 
change together with the tanh actuation capacity to 
Xi  and send the outcome to the next layer. 

Zi
(2) =tanh (XiM(2) +  B(2)) --- (d) 

Zi
(2)  is a latent semantic vector, in which each 

semantic factor will be investigated to decide the 
most helpful factor for representing the content. 

Text Representation Learning: The 
convolutional neural network represents text. From 
the perspective of convolutional neural networks, 
the recurrent structure we previously mentioned is 
the convolutional layer. 

When all of the representations of words are 
calculated, we apply a max-pooling layer. 

 
The max function is an element-wise function. The 
k-th element of 𝑦𝑦(3)  is the maximum in the k-th 
elements of 𝑦𝑦𝑖𝑖

(2). 

The pooling layer changes over writings with 
different lengths into a settled length vector. With 
the pooling layer, the data is caught in the whole 
content. There are different kinds of pooling 
layers, for example, average pooling layers . 
Average pooling isn't made to utilize on the 
grounds that lone a couple of words and their mix 
are helpful for catching the importance of any 
file.The max-pooling layer endeavors to locate the 
most essential dormant semantic factors in the 
archive. The pooling layer uses the yield of the 

repetitive structure as the information. The time 
complexity of the pooling layer is O(n).The 
general model is a course of the recurrent structure 
and a max-pooling layer, accordingly, the time 
many-sided quality of the model is still O(n). 

The last piece of the model is a yield layer. Like 
conventional neural systems, it is characterized as 
𝑦𝑦(4) = 𝑊𝑊(4)𝑦𝑦(3) + 𝑏𝑏(4) 

Finally, the softmax function is applied to 𝑦𝑦(4). It 
can convert the output numbers into probabilities. 

  
3. Correction and Completion 

3.1 Sequence-to-Sequence model 

Sequence-to-sequence models have demonstrated 
huge potential in enhancing vanilla repetitive 
system for input-yield progression mapping 
endeavors, machine translation. An info side 
encoder catches the portrayals in the information, 
while the decoder gets the portrayal from the 
encoder alongside the information and yields a 
relating mapping to the objective dialect. This 
structural set-up appears to normally fit the 
administration of mapping noisy contribution to 
denoised output, where the correction expectation 
can be dealt with as an alternate dialect and the 
task. The drawback of this mapping architecture is 
the fixed input and output sizes and the basic 
sequence-to-sequence model cannot create (test) 
new content or anticipate the following word. It is 
an essential component for keyboard decoder to 
precisely anticipate intended completion. The 
correction and completion can be achieved by 
having a separate corrector network as an encoder 
and an implicit dialect model as a decoder in a 
sequence-to-sequence architecture that trains end-
to-end. A sequence-to-sequence text Correction 
and Completion Encoder Decoder Attention 
network (CCEAD) is outlined in the architectural 
diagram in Figure 1. This model trains a 
combination of dataset to capture the noise to 
correct patterns along with learning the implicit 
dialect model. The main points about the model 
are:  

1. A sequence to sequence architecture deployed 
with a convolution neural network(CNN) - 
gated recurrent unit ( GRU) encoder based on 
character is used to catch error representation 
in noisy text. 

2. The decoder in the model is a gated recurrent 
unit in light of words, it gets the starting state 
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from the encoder and behaves like a dialect 
model. 

3. The model learns conversational content 
adjustment and culminations for use in any 
such content based framework and is 
freethinker to the input. 

 

 
Figure 3: 

3.2 Model Description 

The general design of our model is outlined in Fig 
1. Our model has the comparative basic design of 
the sequence-to-sequence models utilized as a part 
of machine interpretation. Sequence learning 
issues are trying as Deep Neural Networks (DNN) 
require the dimensionality of the information 
sources and focuses to be settled. Further, issues 
emerge if the data sources are character linked 
representations while the results are word level 
representations. Hence, in our model the encoder 
is made out of both recurrent and feed-forward 
units and works at a character level though the 
decoder works at a word level. Our model is made 
on two primary modules: Error Corrector 
Encoding Layer and Language Decoding Layer. 

Character Error Correcting Encoding Layer -  
●  Character Error Context Understanding 

Recurrent Neural Networks, are extremely 
efficient in capturing contextual patterns. For a 
sequence of inputs (x1, ..., xT ), a classical RNN 
computes a sequence of outputs (y1, ..., yT ) 
iteratively using the following equation: 

 
The power of RNNs lie in the ease with which it 
can map input sequence to target sequence, when 
the alignment between sequence is known ahead 
of time. In case of unaligned sequences, to 

circumvent the problem, the input and target 
sequences are padded to fixed length vectors, then 
one RNN is used as the encoder to map the padded 
input vector to a different fixed sized target vector 
using another RNN. However, RNNs struggle to 
cope with long term dependency in the data due to 
vanishing gradient problem. This problem is 
solved using Long Short Term Memory (LSTM) 
recurrent neural networks. However, for purposes 
of error correction, medium to short term 
dependencies are more useful. Therefore, our 
candidate for contextual error correction encoding 
layer is the Gated Recurrent Network (GRU) 
which has similar performance to that of LSTM. 
We evaluated a vanilla sequence to sequence 
model that we trained on exhaustive set of 
synthetic noisy to true mappings, without any 
context. The models could not generalize to all 
types of errors especially insertion and deletion. 
The example in the following table, 

Table 3: 

 
Highlights the importance of context for each of 
the sentences that will require different 
corrections. Gated Recurrent Unit (GRU) are the 
fundamental units of our model. In GRU, the input 
and the hidden states are of the same size that 
enables better generalization. The main motivation 
in using GRU over Long Short Term Memory 
networks (LSTM) as our fundamental unit is the 
size equality between input and state which is not 
the case with LSTM. Also, GRU and LSTM have 
exhibited similar performance across many tasks. 
If the input vector is x representing a character, 
and the current state vector is s, then the output is 
given as in Kaiser et. al.: 

 
In the GRU equations above, W∗  s and the U ∗  s 
are weight matrices with respect to the gates and 
hidden state while the b ∗  s are the bias vectors; 
where both of these type of parameters are learnt 
by the model. u and r are the gates as their 
elements have values between [0, 1] - u is the 
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update gate whereas r is the reset gate. At every 
time step in the recurrent neural network, a GRU 
unit passes the result as the new state to the next 
GRU and to the output of the current time step. 
● Character Error Representation 

The convolutional layers are good at capturing the 
representations for insertion and deletion spelling 
errors. Both the GRU and the CNN are character 
based. For a sequence of, the input to the GRU and 
the CNN is simultaneous and in the form of a 
concatenated and padded fixed sized vector 
corresponding to the sequence length. CNN 
architecture applied to natural language processing 
typically model temporal rather than spatial 
convolutions. The characters considered in our 
model consists of 68 characters, including 26 
English letters, padding symbol for aligning the 
sequences across batches of data input to our 
model, beginning of sequence marker and end of 
sequence marker among other special characters as 
listed below:  

{0: ’\t’, 1: ’\n’, 2: ’\r’, 3: ’ ’, 4: ’!’, 5: ’"’, 6: ’#’, 7: 
’\$’, 8: ’\%’, 9: ’\&’, 10: "’", 11: ’(’, 12: ’)’, 13: 
’*’, 14: ’+’, 15: ’,’, 16: ’.’, 17: ’/’, 18: ’0’, 19: ’1’, 
20: ’2’, 21: ’3’, 22: ’4’, 23: ’5’, 24: ’6’, 25: ’7’, 26: 
’8’, 27: ’9’, 28: ’:’, 29: ’;’, 30: ’=’, 31: ’>’, 32: ’?’, 
33: ’@’, 34: ’[’, 35: ’]’, 36: ’_’, 37: ’‘’, 38: ’a’, 39: 
’b’, 40: ’c’, 41: ’d’, 42: ’e’, 43: ’f’, 44: ’g’, 45: ’h’, 
46: ’i’, 47: ’j’, 48: ’k’, 49: ’l’, 50: ’m’, 51: ’n’, 52: 
’o’, 53: ’p’, 54: ’q’, 55: ’r’, 56: ’s’, 57: ’t’, 58: ’u’, 
59: ’v’, 60: ’w’, 61: ’x’, 62: ’y’, 63: ’z’, 64: ’{’, 
65: ’|’, 66: ’}’, 67: ’’, 68: ’’} 

Suppose the length of the character sequence is 
given by l for the kth word wk, Vc is the 
vocabulary of characters and Ec is the character 
embedding matrix of embedding dimension d such 
that Ec ∈ R |Vc|×d . If word wk is made up of 
characters [c1, c2, . . . , cl ], then the character 
level representation for word wk is V k c ∈ R l×d 
. Central to temporal convolutions is 1D 
convolution. For input function g(x) ∈ [1, l] → R 
and kernel function f(x) ∈ [1, k] → R, the 
convolution is h(y) ∈ [ 1, b(l − k + 1)/dc] → R, 
for stride d is defined as: 

 
where c is the offset constant given by c = k − d + 
1, and k is the width of the filter. There will be 
multiple filters of particular widths to produce the 
feature map, which is then concatenated and 
flattened for further processing. Here, sequence 
length signifies how many characters define the 
context for the error for the GRU and is about 5 
characters or time steps. This sequence size will 

get adjusted to fixed sized length with padding to 
accommodate the shorter sequences. The number 
of neurons or cell size in the GRU is set to 256. 
The CNN consists of 5 filters with sizes varying in 
the range of [2, 3, 4]. The batch size indicating the 
number of instances to train on per batch is fixed 
to 100. The character vocabulary size is 30 
including the character used for padding, newline, 
space, and start of sequence. The number of layers 
in the GRU is fixed to 1. 

Word Level Decoder - 

The decoder is also a GRU recurrent network that 
does word based processing. The output from the 
encoder is a linear transformation between the 
final hidden state of the char based GRU in the 
encoder and the output of the fully connected layer 
of the CNN. This state is then used to initialize the 
state of the decoder. The decoder sees as input a 
padded fixed length vector of integer indexes 
corresponding to the word in the vocabulary. The 
input sequence is a sequence of words prefixed 
with the start token. The sequence length is set to 5 
which will then be padded for shorter sequences to 
generate fixed sized sequence. The vocabulary size 
for word based decoder is only about 3000 words. 
The encoder-decoder is trained end-to-end having 
a combined char-word based representation on the 
encoder and decoder side respectively. The size of 
the GRU cell is 256 with one layer. 

Context based Attention 

The decoder constructs the context by attending to 
the encoder states according to attention 
mechanisms . If the context is given by ci , 
decoder state, previous encoder states by hi by 
si−1, then for the sequence i, . . . , T: 

 
Let 𝜐𝜐𝑤𝑤 be the fixed size vocabulary of words. The 
decoder in our model behaves like an implicit 
language model by specifying a conditional 
distribution over 𝑤𝑤𝑡𝑡+1 consistent with the 
sequence seen so far 𝑤𝑤1:𝑡𝑡 = [𝑤𝑤1, . . . , 𝑤𝑤𝑡𝑡]. The 
GRU recurrent unit achieves this by the 
application of the affine transformation of the 
hidden state followed by projection onto the word 
vocabulary by performing a softmax: 
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where 𝜈𝜈𝑗𝑗 is the j-th column of 𝑃𝑃𝑗𝑗
𝑚𝑚 × |𝜐𝜐|𝑚𝑚 , known 

as the output embedding and b is the bias. Similar 
to our encoder side character embedding, our 
decoder takes word embeddings as inputs, for 
word 𝑤𝑤𝑡𝑡 at time t, 𝑤𝑤𝑡𝑡 = k, the input to the 
decoder is the k column of the word embedding 
matrix 𝐸𝐸𝑤𝑤∈𝑅𝑅|𝜐𝜐|𝑚𝑚× 𝑛𝑛. During optimization the 
loss is evaluated on the output of the decoder at the 
word level. The loss function is the cross-entropy 
loss per time step summed over the output 
sequence y: 

 
5. Conclusion 

In this paper, we review the various different 
techniques that can be used for the purpose of text 
classification, completion and correction. In the 
model we propose to use a recurrent convolutional 
network for text classification, in which our model 
captures contextual information with recurrent 
structure and constructs the representation of text. 
For completion and correction we suggest a 
combination of recurrent and convolutional neural 
sequence-to-sequence model. The models used 
traditionally require a large number of words, 
almost billions, for training and also take a huge 
amount of time to train, whereas, our model 
requires only 50000 words and can be trained 
within a day. The combination of the above 
techniques can help deliver a predictive keyboard 
technology that is efficient and effective. 
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