
ISSN: 2393-8528

 Contents lists available at www.ijicse.in

International Journal of Innovative Computer Science & Engineering

Volume 1 Issue 2; Page No. 24-27

Pa
ge

24

Efficient operating system scheduling for symmetric multi-core architectures in CPU
scheduling”

Sunil Yadav

Lecturer, Devendra Singh Institute of Technology & Management, Gaziabad, India

ARTICLE INFO ABSTRACT

Received 09 Oct. 2014
Accepted 20 Nov. 2014

Corresponding Author:

Sunil Yadav

1 Devendra Singh Institute of
Technology & Management,
Gaziabad, India

 As multi-core architectures begin to emerge in every area of computing,
operating system scheduling that takes the peculiarities of such
architectures into account will become mandatory. Due to architectural
differences to traditional multi-processors, such as shared caches, memory
controllers and smaller cache sizes available per computational unit, it does
not suffice to simply schedule tasks on multi-core processors in the same
way as on SMP systems. It will be the responsibility of the operating system
to spare the programmer as much platform-specific knowledge as possible
and optimize overall performance by employing intelligent and configurable
scheduling mechanisms. In this paper we will discuss about multi core
architecture with the help of no. of scheduling mechanisms.

©2014, IJICSE, All Right Reserved.

1. INTRODUCTION
In the last few years, multi-core CPUs have become a
standard component in nearly all sorts of computers –
not only servers and high-end workstations but also
desktop and laptop PCs for consumers and even game
consoles nowadays usually come with CPUs with more
than one core. In order to implement the exponential
increase of integrated circuits, the transistor structures
have to become steadily smaller. On the one hand, the
extra transistors were used for the integration of more
and more specialized instruction sets on CISC chips. On
the other hand, smaller transistor sizes led to higher
clock rates of the CPUs, because due to physical factors,
the gates in the transistors could perform faster state
switches. However, since electronic activity always
produces heat as an unwanted by-product, the more
transistors are packed together in a small CPU die area,
the higher the resulting heat dissipation per unit area
becomes With the higher switching frequency, the
electronic activity was performed in smaller intervals,

and hence more and more heat-dissipation emerged.
The cooling of the processor components became more
and more a crucial factor in design considerations and it
became clear, that the increasing clock frequency could
no longer serve as the primary reason for processor
speedup.
1.1 Multi core scheduling:
One could assume that the scheduling process on such
multi-core processors wouldn’t differ much from
conventional scheduling – intuitively the run-queue
would just have to be replaced by n run-queues, where
n is the number of cores and processes would simply be
scheduled to the currently shortest run-queue (with
some additional process-priority treatment, maybe).
While that might seem reasonable, there are some
properties of current multi-core architectures that
speak strongly against such a naïve approach. First, in
many multi core architectures, each core manages its
own level 1 cache (Figure 1).

http://www.ijicse.in/

 Sunil Yadav et.al/ Devendra Singh Institute of Technology & Management, Gaziabad, India

Pa
ge

25

Figure 1: Typical multi-core architecture

2. Operating System Scheduling:
• Scheduling Domains: Linux load-balancing takes
care of different cache models and computing
architectures but at the moment not necessarily of
performance asymmetry. The underlying model of the
Linux load balancer is the concept of scheduling
domains, which was introduced in Kernel version2.6.7
due to the unsatisfying performance of Linux scheduling

on SMP and NUMA systems in prior versions The
scheduling domain concept introduces scheduling
domains, a logical union of computing resources that
share common properties, with whom it is reasonable
to treat them equally and CPU groups within these
domains. Those groups contain hardware-addressable
computing resources that are part of the domain on
which the balancer can try to even the domain load out.

Figure 2: Example hierarchy in the Linux scheduling domains

 Sunil Yadav et.al/ Devendra Singh Institute of Technology & Management, Gaziabad, India

Pa
ge

26

• Windows scheduler
In Windows, scheduling is conducted on threads. The
scheduler is priority-based with priorities ranging from
0 to 31. Time slices are allocated to threads in a round-
robin fashion; these time slices are assigned to highest
priority threads first and only if know thread of a given
priority is ready to run at a certain time, lower priority
threads may receive the time slice. However, if higher-
priority threads become ready to run, the lower priority
threads are preempted. Scheduling on SMP-systems is
basically the same, except that Windows keeps the
notion of a thread’s processor affinity and an ideal
processor for a thread. The ideal processor is the
processor with for example the highest cache-locality
for a certain thread. However, if the ideal processor is
not idle at the time of lookup, the thread may just run
on another processor.

3. Problem Defination:
Research on multi-core scheduling deals with a number
of different topics, many of which are orthogonal (e.g.
maximizing fairness and throughput). The purpose of
this section is to present an interesting selection of
different approaches to multi-core scheduling.
3.1Cache-Fairness
The situation is unsatisfactory due to several reasons:
First, it can lead to unpredictable execution times and
throughput and second, scheduling priorities may loose
their effectiveness because of threads running on cores
with aggressive “co-runners” (i.e. threads running on
another core in the same package).Figure 3 shows such
a scenario: Thread B uses the larger part of the shared
cache and thus maybe negatively influences the cycles
per instruction that thread A achieves during its CPU
time share.

Figure 3: Unfair cache utilization by thread B

Figure 4: Restoring fairness by adjusting timeshares

3.2 Balancing core assignment:
This benefit function is based on three inputs
Components:
1) The normalized core preference of a thread, which is
based on the instructions per Cycle that a thread j can
achieve on a certain core i (j i IPC ,), normalized by
max(j k IPC ,) (where k is an arbitrary CPU/core)
2) The cache-affinity, a value which is 1 if the thread j
was scheduled on core i within a
Tunable time period and 0 otherwise
3) The average cache investment of a thread on a core
which is determined by inspecting the hardware cache
miss counters from time to time.

3.3 Performance symmetry:
It has been advocated that building multi-core chips
with asymmetric performance of the Different cores
can have advantages for the overall processing speed of
a CPU.
For example:
It can prove beneficial if one fast core can be used to
speed up parts that can hardly be parallelized while
multiple slower cores come to play when parallel code
parts are executed. By keeping the cores for parallel
execution slower than the core(s) for serial execution,
die area and cost can be saved. While power
consumption may be reduced.

 Sunil Yadav et.al/ Devendra Singh Institute of Technology & Management, Gaziabad, India

Pa
ge

27

Figure 5: Comparison of speedup with SMP and AMP using highly parallel programs (left), moderately.

4. CONCLUSION:
The probability is high, that processor architectures will
undergo extensive changes in order to keep up with
Moore’s law in the future. AMPs and many-core CPUs
are just two proposals for innovative new architectures
that may help in prolonging the time horizon within
which Moore’s law can stay valid. Operating system
schedulers are going to have to adapt to the changing
underlying architectures. Achieving fairness and
repeatability on today’s available multi-core
architectures are the major design goals of the
scheduling techniques detailed in The first approach is
justified by a number of experimental results that show
that priorities are actually enforced much better than
with conventional schedulers; however it remains to be
seen.

5. REFERENCES:

1. G. E. Moore: „Cramming more components onto
integrated circuits“, Electronics,Volume 38, Number
8, 1965.

2. O. Wechsler: „Inside Intel® Core™ Micro-
architecture“, Intel Technology Whitepaper.

3. Li et al.: „Efficient Operating System Scheduling for
Performance-Asymmetric Multi-Core Architec-
tures“, In: International conference on high
performance computing, networking, storage, and
analysis, 2007

4. Balakrishnan et al.: „The Impact of Performance
Asymmetry in Emerging Multicore Architectures”,
In Proceedings of the 32nd Annual International
Symposium on Computer Architecture, pages 506–
517, June 2005.

5. M. Annavaram, E. Grochowski, and J. Shen:
“Mitigating Amdahl’s law through EPI throttling”. In
Proceedings of the 32nd Annual International
Symposium on Computer Architecture, pages 298–
309, June 2005.

6. V. Pallipadi, S.B. Siddha: “Processor Power
Management features and Process Scheduler: Do
we need to tie them together?” In: LinuxConf
Europe 2007.

7. A. Fedorova, M. Seltzer and M. D. Smith: “Cache-
Fair Thread Scheduling for Multicore Processors”,
Technical Report TR-17-06, Harvard University, Oct.
2006

8. S. Kim, D. Chandra and Y. Solihin: “Fair Cache
Sharing and Partitioning in a Chip Multiprocessor
Architecture”, In Proceedings of the International
Conference on Parallel Architectures and
Compilation Techniques, 2004

9. D. Menasce and V. Almeida: “Cost-Performance
Analysis of Heterogeneity in Supercomputer
Architectures”, In: Proceedings of the 4th
International Conference on Supercomputing, June
1990.

