
ISSN: 2393-8528

Contents lists available at www.ijicse.in

International Journal of Innovative Computer Science & Engineering

Volume 4 Issue 3; May-June-2017; Page No. 153-159

*Corresponding author: CH.Kedari Rao |

Pa
ge

15
3

Multiple Support for Large Sequence Databases by Mining Sequential Patterns

CH.Kedari Rao1, D.Akhila2, M.Mounika3
1Assistant Professor in Department of CSE, Sri Indu College of Engineering and Technology

2PG Scholar in Department of CSE, Sri Indu College of Engineering and Technology
3PG Scholar in Department of CSE, Sri Indu College of Engineering and Technology

Received 01 June 2017; Accepted 25 June 2017

ABSTRACT
Sequential pattern mining is an important model in data mining. Its mining algorithms discover all item sets in
the data that satisfy the user-specified minimum support (minsup) and minimum confidence (mincon)
constraints. Minsup controls the minimum number of data cases that a rule must cover. Mincon controls the
analytical strength of the rule. Since only one minsup is used for the whole database, the model completely
assumes that all items in the data are of the same nature and have similar frequencies in the data. In many
applications, some data items appear frequently in the data, while others rarely appeared. If minsup is set too
high, those rules that involve rare data items will not be found. To find rules that involve both frequent and
rare items, minsup has to be set very low. This may affect combinational explosion because those frequent
items will be associated with one another in all possible ways. This problem is called the rare item problem.
This paper proposes to solve this problem. The technique allows the user to specify multiple minimum
supports (MMS) to reflect the natures of the items and their mixed frequencies in the database. In data
mining, different rules may need to satisfy different minimum supports depending on what items are in the
database. Experiment results show that the technique is very effective.
Keywords: Minsup, Mincon

1. INTRODUCTION

Sequential pattern mining are an important one of
regularities that exist in databases. Since it was first
introduced in agarwal [2], the problem of sequential
mining has received a great deal of attention. The
model application is market basket analysis [2]. It
assumes how the items purchased by customers are
associated. An example of an association rule is as
follows,
Cheese-> beer [sup = 20%, conf = 80%]
This rule says that 20% of customers buy
cheese and beer together, and those who buy
cheese also buy beer 80% of the time. The basic
model of association rules as follows:
Let I = {i1, i2, …, im} be a set of data items. Let T
be a set of transactions , where each transaction t is
a set of items such that t I. An association
mining rule is an implication of the form, X->Y,
where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅.
The rule X-> Y holds in the transaction set T with
confidence c if c% of transactions in T that support
X also support Y. The rule has to support s in T if s%
of the transactions in T contains X U Y.

Given a set of transactions T (database), the problem
of mining sequential mining rules is to discover all
association rules that have support and confidence
more than the user-specified minimum support
(called minsup) and minimum confidence (called
mincon).
An association mining algorithm works in two steps:
1. Generate all large itemsets that satisfy minsup.
2. Generate all association rules that satisfy
mincon using the large itemsets.
An itemset is simply a set of items. A large itemset
is an itemset that has transaction support above
minsup.
Association rule mining has been studied
extensively in the past [e.g., 2, 3,4, 5, 11, 14, 10,
12, 1]. This model used in all these studies, has
always been the same, i.e., finding all the rules that
satisfy user specified minimum support and
minimum confidence thresholds.
The main key element in that makes association
rule mining practical is the minsup. It is used to
prune the search space and to limit the number of
data rules generated. However, using only a single
minsup absolutely assumes that all items in the data
are of the same character and/or have same

http://www.ijicse.in/

 CH.Kedari Rao, et. al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved.

Pa
ge

15
4

frequencies in the database. This is regularly not the
case in real-life applications. In many applications,
some items appeard very frequently in the data,
while others rarely appeard. If the frequencies of
data items vary a great deal, we will encounter two
problems:
1. If the minsup is set too high, we will not find
a l l those rules that involve infrequent items or
rare items in the data mining.
2. In order to find rules that involve both frequent
and rare items, we have to set minsup very low.
However, this may cause a problem, producing too
many rules, because those frequent items will be
associated with one another in all possible ways.
Example 1: In transactional database, in order to
find rules involving those infrequently purchased
items such as cooking pan and food processor (they
generate more profits per item), we need to set
the minsup to very low (say, 0.6%). We may find
the following useful rule:
foodProcessor -> cookingPan [sup = 0.6%, conf =
60%] However, this low minsup may also cause the
following meaningless rules to be found:
bread, cheese, milk -> beer [sup = 0.6%, conf =
60%] Knowing that 0.6% of the customers buy
the 4 items together is worthless because all
these items are frequently purchased in a
supermarket. For this rule to be useful, the support
needs to much higher.
This confusion is called the rare item problem
[9]. When confront with this problem in
applications, researchers either split this data into a
few blocks according to the frequencies of the data
items and then mine association rules with a
different minsup
[6], or group a number of related rare items
together into an abstract item so that this abstract
item is more frequent [5, 6]. The first approach is
not satisfy because that rules involve items across
different blocks are difficult to find. Similarly, the
second approach is unable to find data rules
involving individual rare items in data mining and
the more frequent items. Clearly, both approaches
are “approximate” [6].
In this paper argues that using a single minimum
support(minsup) for the whole database is
inadequate because it cannot confine the inherent
natures and/or regularity differences of the data
items in the database. By the natures of the items
we mean that some items, by nature, appeared
more frequently than others. For example, in
a supermarket, people buy cooking pan and food
processor much less frequently than they buy milk
and bread . In factl, those durable and costly goods
are bought less frequently, but each of them
produces more profits.
In this paper, we extend the existing association rule
model to allow the user to specify multiple
minimum supports(MMS) to reflect different natures

and frequencies of data items. exclusively, the user
can specify a different minimum item support(MIS)
for each item. Thus, that different rules may need to
satisfy different minimum supports depending on
whats data items are in the rules. This new technique
enables us to achieve our aim of producing rare item
rules without causing frequent data items to
generate too many meaningless rules. An efficient
algorithm for mining association rules in the model
is also presented. Proposed results on both synthetic
data and real time data show that the proposed
technique is very effective.

2. The Proposed Model

In our proposed model, the definition of association
rule mining is remains the same. The definition of
common minimum support is changed.
In the proposed model, the minimum support of a
data rule is expressed in terms of minimum item
supports (MIS) of the data items that appear in the
rules. That is, each item in the database can have a
minimum item support(MIS) specified by the user.
By providing different MIS values for different data
items, the user effectively expresses different
support requirements for different rules.
Let MIS(I) denotes the MIS value of item(I). The
minimum support of a rule R is the lowest MIS value
of among the items in the rule. That is, a rule R, a1,
a2, …, ak ak+1, …, ar where aj I,
satisfy its minimum support if the rule actual
support in the data is greater than or equal to :
min(MIS(a1), MIS(a2), …, MIS(ar)).
Minimum item supports thus enable us to achieve
the goal of having higher minimum supports for
rules that only involve frequent items, and having
low minimum supports for rules that involve less
frequent items.
Example 2: Consider the following items in a
database, shoes, clothes, Bread.
The user-specified MIS values are as follows:
MIS(shoes) = 0.1% MIS(bread) = 2% MIS(clothes)
= 0.3%
The following rule doesn’t satisfy its minimum
support:
Clothes-> bread [sup = 0.15%, conf = 80%]
because min(MIS(bread), MIS(clothes)) = 0.3%.
The following rule satisfies its minimum support:
clothes -> shoes [sup = 0.15%, conf = 80%]
because min(MIS(clothes), MIS(shoes)) = 0.1%.
While a single minsup is insufficient for
applications, we also realize that there are
deficiencies with mincon of the existing model.
However, it is not the focus of this paper. See [7] for
details. we only present the algorithm for mining
large data itemsets with multiple minimum item
supports

3. Mining Large Data Itemsets with Multiple
MISs

 CH.Kedari Rao, et. al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved.

Pa
ge

15
5

3.1 Downward closure property

As mentioned, existing algorithms for sequential
pattern mining rules typically consists of two steps:
(1) finding all large data itemsets; and (2) generating
association rules using the large itemsets.
Almost all research in sequential mining algorithms
focused on the first step since it is
computationally more expensive. Also, the second
step does not lend itself as well to smart algorithms
as confidence does not have closure property.
Support, on the other hand, is downward closed. If a
set of items satisfies the minsup, then all its subsets
also satisfy the minsup. Downward closure property
holds the key to pruning in all existing mining
algorithms.
Most of efficient algorithms for finding large data
itemsets are based on level-wise search [3]. Let I-
itemset denote an itemset with I items. At level 1, all
large 1-itemsets are generated. At level 2, all large
2-itemsets are generated and so on. If an itemset is
not large at level I-1, it is removed as any addition
of items to the set cannot be large (downward
closure property). All the potentially large data
itemsets at level are generated from large itemsets at
level I-1.
However, in the proposed model, if we use an
existing algorithm to find all large data itemsets,
the downward closure property no longer holds.
Example 3: Consider four items 1, 2, 3 and 4 in a
database. Their minimum item supports are:
MIS(1) = 15% MIS(2) = 20% MIS(3) = 5%
MIS(4) = 6%
If we find that itemset {1, 2} has 9% of support at
level 2, then it does not satisfy either MIS(1) or
MIS(2). Using an existing algorithm, this itemset is
removed since it is not large. Then, the potentially
large data itemsets {1, 2, 3} and {1, 2, 4} will not
be generated for level 3. Obviously, itemsets {1, 2,
3} and {1, 2, 4} may be large because MIS(3) is
only 5% and MIS(4) is 6%. It is thus wrong to
discard {1, 2}. But if we don’t discard {1, 2}, the
downward closure property is lost.
Below, we propose an algorithm to generate large
data itemsets that satisfy the sorted closure property
(see Section 3.3), which solves the problem. The
main idea is to sort the items according to their MIS
values in ascending order to avoid the problem.

3.2 The algorithm

The proposed algorithm generalizes the Apriori
algorithm for finding large data itemsets given in
[3]. We call the new algorithm, MSapriori. When
there is only one MIS value (for all data items), it
reduces to the Apriori algorithm.
Like previous algorithm Apriori, our algorithm is
also based on level-wise search. It generates all
large data itemsets by making number of passes
over the transaction database. In the first pass, it

counts the supports of individual items and
determines whether they are large or small. In each
subsequent pass, it starts with the kernel set of
itemsets found to be large in the previous pass. It
uses this kernel set to generate new possibly large
data itemsets, called candidate data itemsets. The
actual supports for these candidate data itemsets
are computed during the pass over the data. At the
end of the pass, it determines which of the candidate
data itemsets are actually large.
A key operation in the proposed algorithm is the
sorting of the items in I in ascending order of their
MIS values. This ordering is used in all the
subsequent operations in the algorithm. The items in
each itemset also follow this order. For example, in
Example 3 of the four items 1, 2, 3 and 4, and their
given MIS values, these items are sorted as follows:
3, 4, 1, 2. This ordering helps to solve the problem
identified in Section 3.1.
Example 5: Let us continue with Example 4. We
obtain
the following form, <c[1], c[2], …, c[k]>,
which consists of items, c[1], c[2], …, c[k], where
MIS(c[1]) MIS(c[2]) … MIS(c[k]). The
proposed algorithm is given below:
Algorithm MSapriori
1 S = sort (I, MS); /* according to MIS (i)’s
stored in MS */
2 F = init-pass (M,D); /* make the first pass
over D */
3 L1 = {<f> | fF, f.count MIS (f)};
4 for (k = 2; Lk-1; k++) do
5 if k = 2 then C2 = level2-candidate-gen(F)
6 else Ck = candidate-gen(Lk-1)
7 end
8 for each transaction tD do
9 Ct = subset (Ck, t);
10 for each candidate cCt do c.count++;
11 end
12 Lk = {cCk | c.count MIS(c[1])}
13 end
14 Answer = Uk Lk;
First line performs the sorting on I according to their
MIS values of each item (stored in MS). Second
line makes the first pass over the data using the
function init-pass, which takes two parameters, the
database D and the sorted items S to produce the
seeds for generating the set of candidate large data
itemsets of length 2, i.e., C2. init-pass has two steps:
1. It makes a pass over the data to record the
original support count of each item in S.
2. Then it follows the sorted order to find the first
item i in S that meets MIS(i). i is inserted into F.
For each subsequent item j in S after i, if j.count
MIS(i) then j is also inserted into F (j.count
means the count of j).

 CH.Kedari Rao, et. al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved.

Pa
ge

15
6

Note that for simplicity, we use the terms support
and count interchangeably (actually, support =
count/|T|, where |T| is the size of the database T).
Example 4: Let us follow Example 3 and the given
MIS values of the four items. Assume our
transactional database has 100 transactions (not
limited to the 4 items). After making one pass over
the data, we obtain the following support counts:
3.count = 6, 4.count =3, 1.count = 9 and 2.count =
25. Then, (sorted order) F = {3, 1, 2}, and L1 =
{<3>, <2>}
Item 4 is not in F because 4.count < MIS(3) (= 5%),
and <1> is not in L1 because 1.count < MIS(1)
(=15%).
Large 1-itemsets (L1) are obtained from F (line
three). It is easy way to show that all large 1-
itemsets are in L1.
For each subsequent pass, say pass k, the algorithm
performs 3 operations. First, the large itemsets in
Lk-1 found in the (k-1)th pass are used to generate
the candidate itemsets Ck using the condidate-gen
function (line 6). It then scans the data and updates
various support counts of the candidates in Ck (line
8-11). After that,those new large data itemsets are
identified to form Lk (line 12).
However, there is a special case, i.e., when k = 2
(line 5), for which the candidate itemsets generation
function is different. Both candidate generation
functions level2-candidate-gen and candidate-gen
are described below.
3.3 Candidate generation
level2-candidate-gen takes as parameter F, and
returns a superset of the set of all large 2-itemsets.
The algorithm is as follows:
1 for each item f in F in the same order do
2 if f.count MIS(f) then
3 for each item h in F that is after f do
4 if h.count MIS(f) then
5 insert <f, h> into C2
C2 = {<3, 1>, <3, 2>}
<1, 2> is not a candidate 2-itemset because the
support count of
item 1 is only 9%, which is less than MIS(1) (=
15%). Hence, <1, 2> cannot be large.
Note that we must use F rather than L1
because L1 does not contain those data items that
may satisfy the MIS of an earlier items but not the
MIS of itself (see the difference between F and L1
in Example 4). Using F, the problem discussed in
Section 3.1 is solved for C2.
Correctness of level2-candidate-gen: See [7].
Let us now present the candidate-gen function. It
performs a same task as Apriori-gen in Apriori
algorithm [3]. candidate-gen takes as parameter Lk-
1 (k > 2) the set of all large (k-1)-itemsets, and
returns a superset of the set of all large k-itemsets. It
has 2 steps, the join and the prune step. The join

step is the same as that in the apriori-gen function.
The prune step is, however, different. The join step
is given below. It joins Lk-1 with Lk-1:
insert into Ck
select m.item1,m.item2,…, m.itemk-1, n.itemk-1
from Lk-1 m,Lk–1 n
where m.item1 = n.item1, …,m.itemk-2 = n.itemk-2,
m.itemk-1< n.itemk-1
Basically, it joins any 2 itemsets in Lk-1 whose first
k-2 items are the same, but last items are different.

After the join step, there may still be candidate
data itemsets in Ck that are impossible to be large.
The prune step removes these itemsets. This step is
given below:
1 for each itemset cCk do
2 for each (k-1)-subset s of c do
3 if (c[1]s) or (MIS(c[2]) = MIS(c[1])) then
4 if (sLk-1) then delete c from Ck;
It checks each itemset c in Ck (line 1) to see whether
it can be deleted by finding its (k-1)-subsets in Lk-1.
For each (k-1)-subset s in c, if s is not in Lk-1, c can
be deleted. However, there is an exception, which is
when s does not include c[1] (there is only one
such s). This means that the first item of c, which
has the lowest MIS value, is not in s. Then, even if s
is not in Lk-1, we cannot delete c because we cannot
be sure that s does not satisfy MIS(c[1]), although
we know that it does not satisfy MIS(c[2]), unless
MIS(c[2]) = MIS(c[1]) (line 3).
Example 6: Let L3 be {<1, 2, 3>, <1, 2, 5>, <1, 3,
4>, <1, 3, 5>,
<1, 4, 5>, <1, 4, 6>, <2, 3, 5>}. Items in each
itemset are in the
sorted order. After the join step, C4 is
{<1, 2, 3, 5>, <1, 3, 4, 5>, <1, 4, 5, 6>}
The prune step deletes the itemset <1, 4, 5, 6>
because the itemset <1, 5, 6> is not in L3. We are
then left with C4 = {<1, 2,
3, 5>, <1, 3, 4, 5>}. <1, 3, 4, 5> is not deleted
although <3, 4,
5> is not in L3 because the minimum support for
<3, 4, 5> is MIS(3), which may be higher than
MIS(1). Although <3, 4, 5> does not satisfy MIS(3),
we cannot be sure that it does not satisfy MIS(1)
either. However, if we know MIS(3) = MIS(1), then
<1, 3, 4, 5> can also be deleted.
Correctness of candidate-gen: See [7].
The problem discussed in Section 3.1 is solved for
Ck (k > 2) because due to the sorting we do not need
to extend a large (k-1)- itemset with any item that
has a lower MIS value, but only an item with a
higher (or equal) MIS value. Such itemsets are said
to have satisfied the sorted closure property.
3.4 Subset function
The subset function checks to see which itemsets
in Ck are in transaction t. Itemsets in Ck are

 CH.Kedari Rao, et. al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved.

Pa
ge

15
7

stored in a tree similar to that in[3]. Each tree node
contains an item (except the root). By depth- first
traversing of the tree against t, we can find if an
itemset is in t. At each node, we check whether the
item in the node is in t. If experiment. Again the
three thick lines give the number of candidate
itemsets using the existing approach of a single
minsup at 0.1%, 0.2% and 0.3% respectively.
reached, we know that the itemset represented by the
path is in t.
This method for finding Ct is different from that in
[3]. The method in [3] uses each item in t to traverse
the tree. In our extended model, this, however,
requires the items in each transaction t to be sorted
according to their MIS values in ascending order in
order to achieve the sorted closure property.
resides on hard disk. Most databases for
association rule mining are very large. (This is,
however, an alternative implementation).

4. Evaluation

The section evaluates the extended model. We
show that the model allows us to find rules with
very low supports (involving rare items) yet without
generating a huge number of meaningless rules with
frequent items.

4.1 Experiments with synthetic data

The synthetic test data is generated with the data
generator in [3], which is widely used for
evaluating association rule mining algorithms.
For our experiments, we need a method to
assign MIS values to items in the data set. We
use the actual frequencies (or the supports) of the
items in the data as the basis for MIS
assignments. Specifically, we use the following
formulas:
should be related to their frequencies. Thus, to set
MIS values for items we use two parameters,
and LS. If = 0, we have only one minimum
support, LS, which is the same as the traditional
association rule mining. If = 1 and f(i) LS,
f(i) is the MIS value for i.
Example 7: Consider three items, 1, 2 and 3 in
a data set, where f(1) = 1%, f(2) = 3% and f(3) =
10%. If we use LS =
2% and = 0.3, then MIS(1) = 2%, MIS(2)
= 2% and
MIS(3) = 3%.
For our experiments, we generated a number of
data sets to test our model. Here, we use the
results from one data set to illustrate. The others
are similar and thus omitted. This data set is
generated with 1000 items, and 10 items per
transaction on average [3]. The number of
transaction is 100,000. The standard deviation
of the item frequencies of the data set is
1.14% (the mean is 1.17%, expressed in
percentage of the total data set size). This

shows that the frequencies of the items do not
vary a great deal. (The synthetic data generator is
designed for generating data used by mining
algorithms with only one minsup.) For our
experiment, we use three very low LS values,
0.1%, 0.2%, and 0.3%. Figure 1 shows the
number of large itemsets found. The three
thick lines give the numbers of large itemsets
found using the existing approach of a single
minsup at 0.1%, 0.2% and 0.3% respectively. To
show how affects the number of large itemsets
found by our method, we let = 1/ and vary
from 1 to 20. Figure 2 gives the corresponding
numbers of candidate itemsets in the experiment.
Again the three thick lines give the number of
candidate itemsets using the existing approach of a
single minsup at 0.1%, 0.2% and 0.3%
respectively

Figure 1: Number of large item sets found

Figure 2: Number of candidate item sets

We see from Figure 1 that the number of large item
sets is significantly reduced by our method when
is not too large. When becomes larger, the
number of large itemsets found by our method gets
closer to that found by the single minsup method.
The reason is because when becomes larger
more and more items’ MIS values reach LS. From
our experiences, the user is usually satisfied with
the large itemsets found at = 4. At = 4 and LS

 CH.Kedari Rao, et. al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved.

Pa
ge

15
8

= 0.2%, for example, the number of large itemsets
found by our method is less than 61% of that found
by the single minsup method. From Figure 2, we see
that the corresponding numbers of candidate
itemsets are also much less. The execution times are
roughly the same (hence are not shown here)
because database scan dominates the computation
in this experiment. Below, we will see that for our
real-life data set, the reductions in both the number
of large itemsets found and the number of candidate
itemsets used are much more remarkable because the
item frequencies in our real-life data set vary a
great deal. The execution times also drop
drastically because the data set is small and the
computation time is dominated by the itemsets
generation.

4.2 Application to real-life data

We tested the algorithm using a number of real-
life data sets. Here, we only use one application
data set. The results with the others are similar.
Due to confidentiality agreement, we are unable to
provide the details of the application. Here, we only
give the characteristics of the data. The data set
has 55 items and 700 transactions. Each ransaction
has 14-16 items. Some items can appear in 500
transactions, while some may only appear in 30
transactions. The standard deviation of item
frequencies in the data is 25.4% (the mean is
24.3%).
For this application, the user sets LS = 1%. The
results are shown in Figure 3, which include both
the numbers of candidate itemsets and large itemsets
found. The two thick lines show the number of
candidate itemsets and the number of large itemsets
found respectively by the single minsup (= 1%)
method. Our new method reduces the numbers
dramatically. For this application, the user is
happy with the large itemsets found at = 4.
The number of large itemsets found by our method
at = 4 is only
8.5% of that found by the existing single minsup
method. The drop in the number of candidate
itemsets is even more drastic.
rules can have one minsup, and at the level of milk,
cheese, pork and beef, there can be a different
minsup. This model is essentially the same as the
original model in [2] because each level has its
own association rules involving items of that level.
Our proposed model is more flexible as we can
assign a MIS value for each item. [13] presents a
generalized multiple-level association rule mining
technique, where an association rule can involve
items at any level of the hierarchy. However, the
model still uses only one minsup.
It is easy to see that our algorithm
MSapriori is a generalization of the Apriori
algorithm [3] for single minsup mining. That is,
when all MIS values are the same as LS, it

reduces to the Apriori algorithm. A key idea of our
algorithm MSapriori is the sorting of items in I
according to their MIS
This paper argues that a single minsup is insufficient
for association rule mining since it cannot reflect
the natures and frequency differences of the items
in the database. In real-life applications, such
differences can be very large. It is neither
satisfactory to set the minsup too high, nor is it
satisfactory to set it too low. This paper proposes
a more flexible and powerful model. It allows the
user to specify multiple minimum item supports.
This model enables us to found rare item rules yet
without producing a huge number of meaningless
rules with frequent items. The effectiveness of the
new model is shown experimentally and practically.

Figure 3: Numbers of candidate itemsets and large itemsets.

Figure 4: Comparison of execution times in percentage
Figure 4 shows the execution time comparison in
percentage. The execution time used by the single
minsup method is set to
100%. We can see that the proposed method also
reduces the execution time significantly (since this
data set is small, the itemsets generation dominates
the whole computation).
Note that for applications, the user can also assign
MIS values manually rather than using the formulas
in Section 4.1.

 CH.Kedari Rao, et. al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved.

Pa
ge

15
9

a=
17

a=
18

a=
19

5. Related Work

Association rule mining has been studied
extensively in the past [e.g., 2, 3, 5, 11, 4, 14, 10,
12, 1]. However, the model used in all these works
is the same, i.e., with only one user-specified
minimum support threshold [2].
Multiple-level association rule mining in [5] can use
different minimum supports at different levels of
hierarchy. However, at the same level it uses only
one minsup. For example, we have the taxonomy:
milk and cheese are Dairy_product; and pork and
beef are Meat. At the level of Dairy_product and
Meat, association use level-wise search, each step of
our algorithm is different from that of algorithm
Apriori, from initialization, candidate itemsets
generation to pruning of candidate itemsets.

References

1. Aggarwal, C., and Yu, P. "Online generation of
association rules." ICDE-98, 1998, pp. 402-411.

2. Agrawal, R., Imielinski, T., Swami, A. “Mining
association rules between sets of items in large
databases.” SIGMOD-1993, 1993, pp. 207-216.

3. Agrawal, R. and Srikant, R. “Fast algorithms
for mining association rules.” VLDB-94, 1994.

4. Brin, S. Motwani, R. Ullman, J. and Tsur, S.
“Dynamic Itemset counting and implication
rules for market basket data.” SIGMOD-97,
1997, pp. 255-264.

5. Han, J. and Fu, Y. “Discovery of multiple-level
association rules from large databases.” VLDB-
95.

6. Lee, W., Stolfo, S. J., and Mok, K. W.
“Mining audit data to build intrusion detection
models.” KDD-98.

7. Liu, B., Hsu, W. and Ma, Y. Mining
association rules with multiple minimum
supports. SoC technical report, 1999.

8. Liu, B., Hsu, W. and Ma, Y. "Pruning and
Summarizing the Discovered Associations"
KDD-99, 1999.

9. Mannila, H. "Database methods for data
mining.” KDD-98 tutorial, 1998.

10. Ng. R. T. Lakshmanan, L. Han, J. “Exploratory
mining and pruning optimizations of
constrained association rules.” SIGMOD-98,
1998.

11. Park, J. S. Chen, M. S. and Yu, P. S. “An
effective hash based algorithm for mining
association rules.” SIGMOD-95, 1995, pp. 175-
186.

12. Rastogi, R. and Shim, K. “Mining optimized
association rules with categorical and numeric
attributes.” ICDE –98.

13. Srikant, R. and Agrawal, R. “Mining
generalized association rules.” VLDB-1995,
1995.

14. Srikant, R., Vu, Q. and Agrawal, R. “Mining
association rules with item constraints.” KDD-
97, 1997, pp. 67-73.

