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ABSTRACT 
Sequential pattern mining is an important model in data mining. Its mining algorithms discover all item sets in 
the data that satisfy the user-specified minimum support (minsup) and minimum confidence (mincon) 
constraints. Minsup controls the minimum number of data cases that a rule must cover. Mincon controls the 
analytical strength of the rule. Since only one minsup is used for the whole database, the model completely 
assumes that all items in the data are of the same nature and have similar frequencies in the data.  In many 
applications, some data items appear frequently in the data, while others rarely appeared. If minsup is set too 
high, those rules that involve rare data items will not be found. To find rules that involve both frequent and 
rare items, minsup has to be set very low. This may affect combinational explosion because those frequent 
items will be associated with one another in all possible ways. This problem is called the rare item problem. 
This paper proposes to solve this problem. The technique allows the user to specify multiple minimum 
supports (MMS) to reflect the natures of the items and their mixed frequencies in the database. In data 
mining, different rules may need to satisfy different minimum supports depending on what items are in the 
database. Experiment results show that the technique is very effective. 
Keywords: Minsup, Mincon 

1. INTRODUCTION 

Sequential pattern mining are an important one of 
regularities that exist in databases. Since it was first 
introduced in agarwal [2], the problem of sequential 
mining has received a great deal of attention. The 
model application is market basket analysis [2]. It 
assumes how the items purchased by customers are 
associated. An example of an association rule is as 
follows, 
Cheese-> beer [sup = 20%, conf = 80%] 
This  rule  says  that  20%  of  customers  buy  
cheese  and  beer together, and those who buy 
cheese also buy beer 80% of the time. The basic 
model of association rules as follows: 
Let I = {i1, i2, …, im} be a set of data items. Let T 
be a set of transactions , where each transaction t is  
a  set  of  items  such  that  t   I.  An  association 
mining  rule  is  an implication of the form, X->Y, 
where X ⊂ I, Y ⊂ I, and X  ∩ Y = ∅. 
The rule X-> Y holds in the transaction set T with 
confidence c if c% of transactions in T that support 
X also support Y. The rule has to support s in T if s% 
of the transactions in T contains X U Y. 

Given a set of transactions T (database), the problem 
of mining sequential mining rules is to discover all 
association rules that have support and confidence 
more than the user-specified minimum  support  
(called  minsup)  and  minimum  confidence (called 
mincon). 
An association mining algorithm works in two steps: 
1.   Generate all large itemsets that satisfy minsup. 
2.   Generate all association rules that satisfy 
mincon using the large itemsets. 
An itemset is simply a set of items. A large itemset 
is an itemset that has transaction support above 
minsup. 
Association rule mining has been studied 
extensively in the past [e.g., 2, 3,4, 5, 11, 14, 10, 
12, 1]. This model used in all these studies, has 
always been the same, i.e., finding all the rules that 
satisfy user specified minimum support and 
minimum confidence thresholds. 
The main key element in that makes association 
rule mining practical is the minsup. It is used to 
prune the search space and to limit the number of 
data rules generated. However, using only a single 
minsup absolutely assumes that all items in the data 
are of the same character and/or have same 

http://www.ijicse.in/


 CH.Kedari Rao, et. al., International Journal of Innovative Computer Science & Engineering 

 
© 2017 All Rights Reserved. 

Pa
ge

15
4 

frequencies in the database. This is regularly not the 
case in real-life applications. In many applications, 
some items appeard very frequently in the data, 
while others rarely appeard. If the frequencies of 
data items vary a great deal, we will encounter two 
problems: 
1.   If the minsup is set too high, we will not find 
a l l  those rules that involve infrequent items or 
rare items in the data mining. 
2.   In order to find rules that involve both frequent 
and rare items, we have to set minsup very low. 
However, this may cause a problem, producing too 
many rules, because those frequent items will be 
associated with one another in all possible ways. 
Example 1: In transactional database, in order to 
find rules involving those infrequently purchased 
items such as cooking pan and food processor (they 
generate more profits per item), we need  to  set  
the  minsup  to  very low (say, 0.6%). We may find 
the following useful rule: 
foodProcessor -> cookingPan  [sup = 0.6%, conf = 
60%] However, this low minsup may also cause the 
following meaningless rules to be found: 
bread, cheese, milk -> beer  [sup = 0.6%, conf = 
60%] Knowing  that  0.6%  of  the  customers  buy  
the  4  items together is worthless because all 
these items are frequently purchased in a 
supermarket. For this rule to be useful, the support 
needs to much higher. 
This  confusion  is  called  the  rare  item  problem  
[9].  When confront with this problem in 
applications, researchers either split this data into a 
few blocks according to the frequencies of the data 
items  and  then  mine  association  rules  with  a 
different minsup 
[6], or group  a number of related  rare items 
together into an abstract item so that this abstract 
item is more frequent [5, 6]. The first approach is 
not satisfy because that rules involve items across 
different blocks are difficult to  find. Similarly, the 
second approach is unable to find data rules 
involving individual rare items in data mining and 
the more frequent items. Clearly, both approaches 
are  “approximate” [6]. 
In this paper argues that using a single minimum 
support(minsup) for the whole database is 
inadequate because it cannot confine the inherent 
natures and/or regularity differences of the data 
items in the database. By the natures of the items 
we mean  that some items, by nature, appeared   
more   frequently   than   others.   For   example,   in   
a supermarket, people buy cooking pan and food 
processor much less frequently than they buy milk 
and  bread . In factl, those durable and costly goods 
are bought less frequently, but each of them 
produces more profits.   
In this paper, we extend the existing association rule 
model to allow the user to specify multiple 
minimum supports(MMS) to reflect different natures 

and frequencies of data items. exclusively, the user 
can specify a different minimum item support(MIS) 
for each item. Thus, that different rules may need to 
satisfy different minimum supports depending on 
whats data items are in the rules. This new technique 
enables us to achieve our aim of producing rare item 
rules without causing frequent data items to 
generate too many meaningless rules. An efficient 
algorithm for mining association rules in the model 
is also presented. Proposed results on both synthetic 
data and real time data show that the proposed 
technique is very effective. 

2.  The Proposed Model 

In our proposed model, the definition of association 
rule mining is remains the same. The definition of 
common minimum support is changed. 
In the proposed model, the minimum support of a 
data rule is expressed in terms of minimum item 
supports (MIS) of the data items that appear in the 
rules. That is, each item in the database can have a 
minimum item support(MIS)  specified by the user. 
By providing different MIS values for different data 
items, the user effectively expresses different 
support requirements for different rules. 
Let MIS(I) denotes the MIS value of item(I). The 
minimum support of a rule R is the lowest MIS value 
of among the items in the rule. That is, a rule R, a1, 
a2, …, ak          ak+1, …, ar  where aj        I, 
satisfy its minimum support if the rule actual 
support in the data is greater than or equal to : 
min(MIS(a1), MIS(a2), …, MIS(ar)). 
Minimum item supports thus enable us to achieve 
the goal of having higher minimum supports for 
rules that only involve frequent items, and having 
low minimum supports for rules that involve less 
frequent items. 
Example 2: Consider the following items in a 
database, shoes, clothes, Bread. 
The user-specified MIS values are as follows: 
MIS(shoes) = 0.1%  MIS(bread) = 2% MIS(clothes) 
= 0.3% 
The following rule doesn’t satisfy its minimum 
support: 
Clothes-> bread [sup = 0.15%, conf = 80%] 
because min(MIS(bread), MIS(clothes)) = 0.3%. 
The following rule satisfies its minimum support: 
clothes -> shoes [sup = 0.15%, conf = 80%] 
because min(MIS(clothes), MIS(shoes)) = 0.1%. 
While a single minsup is insufficient for 
applications, we also realize that there are 
deficiencies with mincon of the existing model. 
However, it is not the focus of this paper. See [7] for 
details. we only present the algorithm for mining 
large data itemsets with multiple minimum item 
supports  

3.   Mining Large Data Itemsets with Multiple 
MISs 
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3.1 Downward closure property 

As mentioned, existing algorithms for sequential 
pattern mining rules typically consists of two steps: 
(1) finding all large data itemsets; and (2) generating 
association rules using the large itemsets. 
Almost all research in sequential mining algorithms 
focused  on  the  first  step  since  it  is  
computationally  more expensive. Also, the second 
step does not lend itself as well to smart algorithms 
as confidence does not have closure property. 
Support, on the other hand, is downward closed. If a 
set of items satisfies the minsup, then all its subsets 
also satisfy the minsup. Downward closure property 
holds the key to pruning in all existing mining 
algorithms. 
Most of efficient algorithms for finding large data 
itemsets are based on level-wise search [3]. Let I-
itemset denote an itemset with I items. At level 1, all 
large 1-itemsets are generated. At level 2, all large 
2-itemsets are generated and so on. If an itemset is 
not large at level I-1, it is removed as any addition 
of items to the set cannot be large (downward 
closure property). All the potentially large data 
itemsets at level  are generated from large itemsets at 
level I-1. 
However, in the proposed model, if we use an 
existing algorithm  to  find  all  large data itemsets,  
the  downward  closure property no longer holds. 
Example 3: Consider four items 1, 2, 3 and 4 in a 
database. Their minimum item supports are: 
MIS(1) = 15%        MIS(2) = 20% MIS(3) = 5%          
MIS(4) = 6% 
If we find that itemset {1, 2} has 9% of support at 
level 2, then it does not satisfy either MIS(1) or 
MIS(2). Using an existing algorithm, this itemset is 
removed since it is not large. Then, the potentially 
large data itemsets {1, 2, 3} and {1, 2, 4} will not 
be generated for level 3. Obviously, itemsets {1, 2, 
3} and {1, 2, 4} may be large because MIS(3) is 
only 5% and MIS(4) is 6%. It is thus wrong to 
discard {1, 2}. But if we don’t discard {1, 2}, the 
downward closure property is lost. 
Below, we propose an algorithm to generate large 
data itemsets that satisfy the sorted closure property 
(see Section 3.3), which solves the problem. The 
main idea is to sort the items according to their MIS 
values in ascending order to avoid the problem. 

3.2 The algorithm 

The proposed algorithm generalizes the Apriori 
algorithm for finding large data itemsets given in 
[3]. We call the new algorithm, MSapriori. When 
there is only one MIS value (for all data items), it 
reduces to the Apriori algorithm. 
Like previous algorithm Apriori, our algorithm is 
also based on level-wise search. It generates all 
large data itemsets by making number of passes 
over the transaction database. In the first pass, it 

counts the supports of individual items and 
determines whether they are large or small. In each 
subsequent pass, it starts with the kernel set of 
itemsets found to be large in the previous pass. It 
uses this kernel set to generate new possibly large 
data itemsets, called candidate data itemsets. The 
actual supports for these candidate data itemsets 
are computed during the pass over the data. At the 
end of the pass, it determines which of the candidate 
data itemsets are actually large. 
A key operation in the proposed algorithm is the 
sorting of the items in I in ascending order of their 
MIS values. This ordering is used in all the 
subsequent operations in the algorithm. The items in 
each itemset also follow this order. For example, in 
Example 3 of the four items 1, 2, 3 and 4, and their 
given MIS values, these items are sorted as follows: 
3, 4, 1, 2. This ordering helps to solve the problem 
identified in Section 3.1. 
Example 5: Let us continue with Example 4. We 
obtain 
the  following  form,  <c[1],  c[2],  …,   c[k]>,  
which  consists  of items, c[1], c[2], …,  c[k], where 
MIS(c[1])     MIS(c[2])     … MIS(c[k]). The 
proposed algorithm is given below: 
Algorithm MSapriori 
1       S = sort (I, MS);     /* according to MIS (i)’s 
stored in MS */ 
2      F = init-pass (M,D);      /* make the first pass 
over D */ 
3      L1 = {<f> | fF, f.count MIS (f)}; 
4      for (k = 2; Lk-1; k++) do 
5      if k = 2 then  C2 = level2-candidate-gen(F) 
6      else  Ck = candidate-gen(Lk-1) 
7      end 
8      for each transaction tD do 
9      Ct = subset (Ck, t); 
10     for each candidate cCt do  c.count++; 
11    end 
12    Lk = {cCk | c.count MIS(c[1])} 
13   end 
14   Answer = Uk Lk; 
First line performs the sorting on I according to their 
MIS values of each item (stored in MS). Second 
line makes the first pass over the data using the 
function init-pass, which takes two parameters, the 
database D and the sorted items S to produce the 
seeds for generating the set of candidate large data 
itemsets of length 2, i.e., C2. init-pass has two steps: 
1.  It makes a pass over the data to record the 
original support count of each item in S. 
2. Then it follows the sorted order to find the first 
item i in S that meets MIS(i). i is inserted into F. 
For each subsequent item j in S after i, if j.count 
MIS(i) then j is also inserted into F (j.count 
means the count of j). 
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Note that for simplicity, we use the terms support 
and count interchangeably (actually, support = 
count/|T|, where |T| is the size of the database T). 
Example 4: Let us follow Example 3 and the given 
MIS values of the four items. Assume our 
transactional database has 100 transactions (not 
limited to the 4 items). After making one pass over 
the data, we obtain the following support counts: 
3.count = 6, 4.count =3, 1.count = 9 and 2.count = 
25. Then, (sorted order) F = {3, 1, 2}, and L1 = 
{<3>, <2>} 
Item 4 is not in F because 4.count < MIS(3) (= 5%), 
and <1> is not in L1 because 1.count < MIS(1) 
(=15%). 
Large 1-itemsets (L1) are obtained from F (line 
three). It is easy way to show that all large 1-
itemsets are in L1. 
For each subsequent pass, say pass k, the algorithm 
performs 3 operations. First, the large itemsets in 
Lk-1  found in the (k-1)th pass are used to generate 
the candidate itemsets Ck using the condidate-gen 
function (line 6). It then scans the data and updates 
various support counts of the candidates in Ck  (line 
8-11). After that,those new large data itemsets are 
identified to form Lk (line 12). 
However, there is a special case, i.e., when k = 2 
(line 5), for which the candidate itemsets generation 
function is different. Both candidate  generation  
functions  level2-candidate-gen  and candidate-gen 
are described below. 
3.3 Candidate generation 
level2-candidate-gen takes as parameter F, and 
returns a superset of the set of all large 2-itemsets. 
The algorithm is as follows: 
1    for each item f in F in the same order do 
2          if f.count  MIS(f) then 
3                for each item h in F that is after f do 
4                      if h.count MIS(f) then 
5                          insert <f, h> into C2 
C2 = {<3, 1>, <3, 2>} 
<1, 2> is not a candidate 2-itemset because the 
support count of 
item 1 is only 9%, which is less than MIS(1) (= 
15%). Hence, <1, 2> cannot be large. 
Note  that  we  must  use  F  rather  than  L1   
because  L1  does  not contain those data items that 
may satisfy the MIS of an earlier items but not the 
MIS of itself (see the difference between F and L1 
in Example 4). Using F, the problem discussed in 
Section 3.1 is solved for C2. 
Correctness of level2-candidate-gen: See [7]. 
Let us now present the candidate-gen function. It 
performs a same task as Apriori-gen in Apriori 
algorithm [3]. candidate-gen takes as parameter Lk-
1  (k > 2) the set of all large (k-1)-itemsets, and 
returns a superset of the set of all large k-itemsets. It 
has 2 steps, the join and the prune step. The join 

step is the same as that in the apriori-gen function. 
The prune step is, however, different. The join step 
is given below. It joins Lk-1 with Lk-1: 
insert into Ck 
select m.item1,m.item2,…, m.itemk-1, n.itemk-1 
from Lk-1 m,Lk–1 n  
where m.item1 = n.item1, …,m.itemk-2 = n.itemk-2, 
m.itemk-1< n.itemk-1 
Basically, it joins any 2 itemsets in Lk-1 whose first 
k-2 items are the same, but last items are different. 

After the join step, there may still be candidate 
data itemsets in Ck that are impossible to be large. 
The prune step removes these itemsets. This step is 
given below: 
1      for each itemset cCk do 
2      for each (k-1)-subset s of c do 
3       if (c[1]s) or (MIS(c[2]) = MIS(c[1])) then 
4       if (sLk-1) then  delete c from Ck; 
It checks each itemset c in Ck (line 1) to see whether 
it can be deleted by finding its (k-1)-subsets in Lk-1. 
For each (k-1)-subset s in c, if s is not in Lk-1, c can 
be deleted. However, there is an exception, which is 
when s does not include c[1] (there is only one 
such s). This means that the first item of c, which 
has the lowest MIS value, is not in s. Then, even if s 
is not in Lk-1, we cannot delete c because we cannot 
be sure that s does not satisfy MIS(c[1]), although 
we know that it does not satisfy MIS(c[2]), unless 
MIS(c[2]) = MIS(c[1]) (line 3). 
Example 6: Let L3 be {<1, 2, 3>, <1, 2, 5>, <1, 3, 
4>, <1, 3, 5>, 
<1, 4, 5>, <1, 4, 6>, <2, 3, 5>}. Items in each 
itemset are in the 
sorted order. After the join step, C4 is 
{<1, 2, 3, 5>, <1, 3, 4, 5>, <1, 4, 5, 6>} 
The prune step deletes the itemset <1, 4, 5, 6> 
because the itemset <1, 5, 6> is not in L3. We are 
then left with C4 = {<1, 2, 
3, 5>, <1, 3, 4, 5>}. <1, 3, 4, 5> is not deleted 
although <3, 4, 
5> is not in L3  because the minimum support for 
<3, 4, 5> is MIS(3), which may be higher than 
MIS(1). Although <3, 4, 5> does not satisfy MIS(3), 
we cannot be sure that it does not satisfy MIS(1) 
either. However, if we know MIS(3) = MIS(1), then 
<1, 3, 4, 5> can also be deleted. 
Correctness of candidate-gen: See [7]. 
The problem discussed in Section 3.1 is solved for 
Ck (k > 2) because due to the sorting we do not need 
to extend a large (k-1)- itemset with any item that 
has a lower MIS value, but only an item with a 
higher (or equal) MIS value. Such itemsets are said 
to have satisfied the sorted closure property. 
3.4 Subset function 
The subset function checks to see which itemsets 
in Ck  are in transaction t. Itemsets in Ck  are 
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stored in a tree similar to that in[3]. Each tree node 
contains an item (except the root). By depth- first 
traversing of the tree against t, we can find if an 
itemset is in t. At each node, we check whether the 
item in the node is in t. If experiment. Again  the 
three  thick  lines  give  the  number  of candidate 
itemsets using the existing approach of a single 
minsup at 0.1%, 0.2% and 0.3% respectively. 
reached, we know that the itemset represented by the 
path is in t. 
This method for finding Ct  is different from that in 
[3]. The method in [3] uses each item in t to traverse 
the tree. In our extended model, this, however, 
requires the items in each transaction t to be sorted 
according to their MIS values in ascending order in 
order to achieve the sorted closure property. 
resides on hard disk. Most databases for 
association rule mining are very large. (This is, 
however, an alternative implementation). 

4. Evaluation 

The  section  evaluates  the  extended  model.  We  
show  that  the model allows us to find rules with 
very low supports (involving rare items) yet without 
generating a huge number of meaningless rules with 
frequent items. 

4.1 Experiments with synthetic data 

The synthetic test data is generated with the data 
generator in [3],  which  is  widely  used  for  
evaluating  association  rule mining algorithms. 
For  our  experiments,  we  need  a  method  to  
assign  MIS  values to items in the data set. We 
use the actual frequencies (or the supports) of the 
items in the data as the basis for MIS 
assignments. Specifically, we use the following 
formulas: 
should be related to their frequencies. Thus, to set 
MIS values for items we use two parameters,     
and LS. If     = 0, we have only one minimum 
support, LS, which is the same as the traditional 
association rule mining. If     = 1 and f(i)    LS, 
f(i) is the MIS value for i. 
Example 7: Consider three items, 1, 2 and 3 in 
a data set, where f(1) = 1%, f(2) = 3% and f(3) = 
10%. If we use LS = 
2%  and      =  0.3,  then  MIS(1)  =  2%,  MIS(2)  
=  2%  and 
MIS(3) = 3%. 
For our experiments, we generated a number of 
data sets to test our model. Here, we use the 
results from one data set to illustrate. The others 
are similar and thus omitted. This data set is 
generated with 1000 items, and 10 items per 
transaction on  average [3]. The number  of 
transaction  is  100,000.  The standard deviation 
of the item frequencies of the data set is 
1.14%  (the  mean  is  1.17%,  expressed  in  
percentage  of  the total  data  set  size).  This  

shows  that  the  frequencies  of  the items do not 
vary a great deal. (The synthetic data generator is 
designed for generating data used by mining 
algorithms with only one minsup.) For our 
experiment, we use three very low LS values, 
0.1%, 0.2%, and 0.3%. Figure 1 shows the 
number of  large  itemsets  found.  The  three  
thick  lines  give  the numbers of large itemsets 
found using the existing approach of a single 
minsup at 0.1%, 0.2% and 0.3% respectively. To 
show how    affects the number of large itemsets 
found by our method, we let      = 1/    and vary      
from 1 to 20. Figure 2 gives the corresponding 
numbers of candidate itemsets in the experiment. 
Again  the three  thick  lines  give  the  number  of 
candidate itemsets using the existing approach of a 
single minsup at 0.1%, 0.2% and 0.3% 
respectively 

 
Figure 1: Number of large item sets found 

 
Figure 2: Number of candidate item sets 

We see from Figure 1 that the number of large item 
sets is significantly reduced  by our method  when      
is not too  large. When     becomes larger, the 
number of large itemsets found by our method gets 
closer to that found by the single minsup method. 
The reason is because when      becomes larger 
more and more items’ MIS values reach  LS. From 
our experiences, the user is usually satisfied with 
the large itemsets found at     = 4. At     = 4 and LS 
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= 0.2%, for example, the number of large itemsets 
found by our method is less than 61% of that found 
by the single minsup method. From Figure 2, we see 
that the corresponding numbers of candidate 
itemsets are also much less. The execution times are 
roughly the same (hence are not shown here) 
because database scan dominates the computation 
in this experiment. Below, we will see that for our 
real-life data set, the reductions in both the number 
of large itemsets found and the number of candidate 
itemsets used are much more remarkable because the 
item frequencies  in  our  real-life  data  set  vary  a  
great  deal.  The execution times also drop 
drastically because the data set is small and the 
computation time is dominated by the itemsets 
generation. 

4.2 Application to real-life data 

We tested the algorithm using a number of real-
life data sets. Here, we only use one application 
data set. The results with the others are similar. 
Due to confidentiality agreement, we are unable to 
provide the details of the application. Here, we only 
give the characteristics of the data. The data set 
has 55 items and 700 transactions. Each ransaction 
has 14-16 items. Some items can appear in 500 
transactions, while some may only appear in 30 
transactions. The standard deviation of item 
frequencies in the data is 25.4% (the mean is 
24.3%). 
For this application, the user sets LS = 1%. The 
results are shown in Figure 3, which include both 
the numbers of candidate itemsets and large itemsets 
found. The two thick lines show the number of 
candidate itemsets and the number of large itemsets 
found respectively by the single minsup (= 1%) 
method. Our new method reduces the numbers 
dramatically. For this application, the user is 
happy with the large itemsets found at      = 4. 
The number of large itemsets found by our method 
at     = 4 is only 
8.5% of that found by the existing single minsup 
method. The drop in the number of candidate 
itemsets is even more drastic. 
rules can have one minsup, and at the level of milk, 
cheese, pork and  beef,  there  can  be  a  different  
minsup.  This  model  is essentially the same as the 
original model in [2] because each level has its 
own association rules involving items of that level. 
Our proposed model is more flexible as we can 
assign a MIS value for each item. [13]  presents a 
generalized  multiple-level association rule mining 
technique, where an association rule can involve 
items at any level of the hierarchy. However, the 
model still uses only one minsup. 
It   is   easy   to   see   that   our   algorithm   
MSapriori   is   a generalization of the Apriori 
algorithm [3] for single minsup mining.  That  is,  
when  all  MIS  values  are  the  same  as  LS,  it 

reduces to the Apriori algorithm. A key idea of our 
algorithm MSapriori is the sorting of items in  I 
according to  their MIS  
This paper argues that a single minsup is insufficient 
for association  rule mining since it cannot reflect 
the natures and frequency differences of the items 
in  the database. In  real-life applications, such 
differences can be very large. It is neither 
satisfactory to set the minsup too high, nor is it 
satisfactory to set it too  low. This paper proposes 
a more flexible and  powerful model. It allows the 
user to specify multiple minimum item supports. 
This model enables us to found rare item rules yet 
without producing a huge number of meaningless 
rules with frequent items. The effectiveness of the 
new model is shown experimentally and practically. 

 
Figure 3: Numbers of candidate itemsets and large itemsets. 

 
Figure 4: Comparison of execution times in percentage 
Figure 4 shows the execution time comparison in 
percentage. The execution time used by the single 
minsup method is set to 
100%. We can see that the proposed method also 
reduces the execution time significantly (since this 
data set is small, the itemsets generation dominates 
the whole computation). 
Note that for applications, the user can also assign 
MIS values manually rather than using the formulas 
in Section 4.1. 
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5.  Related Work 

Association rule mining has been studied 
extensively in the past [e.g., 2, 3, 5, 11, 4, 14, 10, 
12, 1]. However, the model used in all these  works  
is  the  same,  i.e.,  with  only  one  user-specified 
minimum support threshold [2]. 
Multiple-level association rule mining in [5] can use 
different minimum supports at different levels of 
hierarchy. However, at the same level it uses only 
one minsup. For example, we have the taxonomy: 
milk and cheese are Dairy_product; and pork and 
beef are Meat. At the level of Dairy_product and 
Meat, association use level-wise search, each step of 
our algorithm is different from that of algorithm 
Apriori, from initialization, candidate itemsets 
generation to pruning of candidate itemsets. 
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