
ISSN: 2393-8528
 Contents lists available at www.ijicse.in

International Journal of Innovative Computer Science & Engineering

Volume 4 Issue 3; May-June-2017; Page No. 102-109

*Corresponding author: Saqib Mamoon | Pa
ge

10
2

Modern C++ Design Patterns and Idioms with New Features

Saqib Mamoon1, Irfan Yaqoob2, Nouman Naseer3, Jazeb Akram4, Raheel Osman5, Sidra Zulfiqar6
1University of the Punjab, Jhelum Campus, Jhelum, Pakistan

bcs.12.06@pujc.edu.pk
2University of the Punjab, Jhelum Campus, Jhelum, Pakistan

bcs.s12.33@pujc.edu.pk
3University of the Punjab, Jhelum Campus, Jhelum, Pakistan

bscs.s12.41@pujc.edu.pk
4University of the Punjab, Jhelum Campus, Jhelum, Pakistan

jazebakram@gmail.com
5NETCIA, Nanjing Agriculture University, China

raheel_osman@yahoo.com
6Government Post Graduate College Okara, Punjab Pakistan

duasidra127@gmail.com

Received 01 May 2017; Accepted 23 May 2017

ABSTRACT
The object oriented paradigm plays a vital role not only in programming languages but also in the field of
database, operating system and other field of computer science. This paper defines the overview of the
concept of Design Patterns, Idioms and functional programming and defines how these concepts are
implemented in C++.It describes how New features in C++ change the way of the programming, and
integrate the new algorithms, libraries and the way to program in Object Oriented fashion in C++.We
illustrate how much efficient and effective programming practices are been done through these concepts in
the industry. We have briefly discuss the major and prime new features, libraries, algorithms added to C++11
and improved in C++14.
Keywords: Design Pattern, Idioms, Modern Features, pointers and functional Programming

1. Introduction

Design patterns and idioms are important concepts
helping programmers to produce good code and avoid
pitfalls.So what is a design pattern? Design pattern is
commonly defined as being tested solution to a
recurring problem in a particular context.so let's take
this apart see what it implies toqualify as a design
pattern, a solution has to be tested and it's pros and
cons well understood, design patterns document
solutions that have been discovered and refine over
time by experienced programmers. It always seems a
little strange to see design patterns describe the
technologies that are only a few months old so can’t
have test that much. Secondly the problem solved by
pattern should be widely applicable, it isn't really
worth taking trouble to document the solution to a
problem if it isn't likely to recur or if no one else is
going to encounter it. [2,3] All design pattern have a

context and may not be applicable or maybe even
actively harmful if used outside that context, For
example a pattern used to solve problems with wear
application may not will be suitable for real-time
applications. Patterns are designed to present best
practices in a practical way building on the knowledge
of experienced developers, there's a saying patterns
are discovered not invented, if something really is a
best practice you'd expect experienced practitioners
to discover independently because it is the best way
to do the job in fact the patterns are best practices
you may have well discovered something by yourself
and it is quite common for a good developer to get a
slight feeling of anticlimax when hearing about the
patterns.

Design patterns have several advantages for the
developer, first they provide shared language that
improves communication making it easier to

http://www.ijicse.in/

 Saqib Mamoon, et.al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved. Pa
ge

10
3

communicate insight and experience about problems
and how they can be solved for instance when
someone says that use the visitor is a concise way of
saying that they want to add functionality to a class
without changing it, separating the operation from
the class been operated on and of course using design
patterns helps you build on the experience of others
not onlydoes this help you to avoid problems and
pitfalls that may not be obvious, but it also guards
against reinventing the wheel thinking up your own
solution to a problem where a perfectly good one
already exist.[4,5]A good programmer is humble
recognising that he or she doesn't necessarily know
everything that's a home-grown solution is unlikely to
match established best practice

2. Literature Review

Where did design patterns originate? An architect
called Christopher Alexander discovered patterns in
architectural designs and he published book called “A
Pattern language towns buildings” construction in the
1970s, this defined 253 patterns that formed what he
called a pattern language,[7] Kent Beck and Ward
Cunningham began studying patterns and software in
the early 1980sErich Gamma became intrusted while
doing his PhD. Gamma Richard Helm began
cataloguing patterns in 1991,they were joined by
Ralph Johnson and John Vlissidesand they all became
known as the gang of four their work was published
as a book design patterns elements of reusable object
oriented software, this now universally known as
gand of four book and describe 23 basic patterns.[13]

Figure 1:

So what were the original patterns the 23 patterns
described by gang of four book can be divided into
three groups by function Creational,Structural and
Behavioural. Creational patterns describe ways of
creating objects, structuralpatterns deal with how
objects are built into larger structures and
Behavioural patterns relate to run time behaviour.
They can further be divided in to twofamilies,

consisting of those that are class based and those that
are object based and here we can see the 23 divided
into their groupas shown in fig.

Let's briefly reviews some common patterns, first one
we discuss is Model View Controllerbetter known as
MVC, this was perhaps the original design pattern it
was discovered byTrygveReenskaug, when he was a
visiting science conference in the smalltalkRupert
XeroxPalo Alto research Lab and he published the first
paper on his in 1978, [1] the idea behind MVC is to
decouple a model which Reenskaug originally
described as knowledge from the way in which it is
viewed. Controllers provided interface between the
user and the rest of the system MVC was discovered
at the very birth of Graphical User Interfaces and is
now the basis for countless applications and
frameworks in both desktop and web world's there
are many variations on MVC’s such as Model View
Presenterand Model View Viewmodel all of which built
with the basic idea separating a model from its
representation so model holds and manipulate data
which is displayed by one or more views controllers
pass interaction information to the model and the
user interacts with controllers and views.

Figure 2:

State Patternis used when an object needs to change
its behaviour when its state changes, the classic
example for this might be bank account whose
behaviour changes depending on whether itsstate is
in credit or over drawn. Objectstates are presented by
classes and this removes the need for multiple if and
switch statements to checkthe state. an object known
as a context refers to two or more States objects
which implement a common interface it's interesting
to note that States is related to its strategy both of
them has the same UML class diagram which could be
sort of the general breach design the difference
between them is being there intent.

 Saqib Mamoon, et.al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved. Pa
ge

10
4

Figure 3:

Singleton is designed to allow creation of only one
instance of a class and provide a global point of access
to it but that rather depends on your definition of one
you mean one instance per app, one per machine or
one in entire worldand do you mean one physical
object or one set of states so that you could have
multiple instances that look identical, it's also rather
harderto implement than you might think in C++ due
to life time it is use and also initialization. Despite
looking simple Singleton can be tricky to handle.
Observer which is designed to let a component
provide notification of state changes to interested
parties, observer is the good example of pattern has
been incorporated to many libraries and frameworks,
so it is often not necessary for the developer to
implement themselves. so we have an object that
may change state and observer can register a call back
with the object and when a state change occurs the
object send notifications to each call back in its list

Figure 4:

3. Idioms

As well as design patterns we have idioms so what is
an idiom idioms? Idioms differs from patterns in that
they are specific to a language or platform as such
idiots are rather lower level compact intend to apply
at the code level. good examples of these would

include pointers and templates in C++, perhaps they
are especially templates is there is nothing quite like
them in any other languages I've come across in
languages that use garbage collection such as Java
you will see finally use with try blocks there's a way to
introduce deterministic clean up while avoiding
codeduplication. C++ offcourse doesn’t need this
because destructors give us real control over object
life time.

4. Implementation (Modern Patterns and Idioms)

Implementing patterns, it's important to understand
that there is no one correct way to implement
pattern, many people seem to get hung up on the
UML diagrams that they seem books on the web and
think that they show the one true way to implement
the design pattern in truth the intent is far more
important than the actual structure.[8,10,11]If that
part of your Design is expressing the intent of the
pattern then it is a valid implementation. Reification
means make some real or concrete and in context of
design patterns it means producing something that
expresses the intent of the pattern whether or not it
exactly matcher the UML

Off course patterns are ideas and have to be realised
in code in order to be useful, let's look at how several
common patterns and idioms can be implemented in
C++. We’re going to consider six.
1) RAII
2) States
3) smart pointer
4) PIMPL
5) CRTP
6) Singleton
of these six States and Singleton are Design patterns
and the rest are idioms. we are going to discuss how
these common patterns and idioms can be
implemented in C++ 98 before the changes made to
C++ 11 and 14 release, we will note that these are
very simplisticimplementations, designed to illustrate
the principles and not suited for real world use a used
to illustrate how the patterns already can be
implemented cater for possible corner cases for
handle errors

4.1 RAII (Resource Acquisition Is Initialisation)

RAII (resource acquisition is initialization) essentially
means doing something in the constructor of a class
and undoing it in the destructor although it is widely
used in the C++ world as you might expect it is also
used in other languages that have a concept of a
destructor including Rust & Ada, locking provides a
good example so let's see how that works in
practicewhen using the mutex, you need to
remember to unlock it, at the end of the section of

 Saqib Mamoon, et.al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved. Pa
ge

10
5

the code. It can be done by using only destructor but
if the exception is thrown the mutex may not be
unlocked, so we can use a simple class that uses RAII
to unlock the mutex after its been used, which will
even work correctly if exception gets thrown, particle
example given below. All of this should work in any
development environment that supports C++ 11 or
14.

Class Lock {
 lock () { // Do something here }

~lock() { //Undo here }
};

4.2 STATE

As name implies the state pattern is designed to
represent changing objects states representing
individual States by subclass is a good sign that this
pattern may be applicable is when you find similar
switch statements or changes of if in the classes
methods, all checking for the same objects state a
good example might be the traditional bank account
class with deposit withdraw another method check
whether the account is in credit or not, using this
pattern removes the need for these Repeater checks
and code is more modular because a logic for a
particular state is not spread over several functions,
so we do this by representing States as subclasses all
of which implement a particular interface inheriting
from an abstract base class.[9]as an example let's
consider membership for example subscribing to
website, theremay will be several classes of
memberships such as basic free access and ordinary
subscriber and a premium subscriber the type of
membership for user has will determine their access
to feature of the site you might think about using
inheritance the model of various membership types
with free member types inherited from base class but
this will work until we need to handle upgrading users
membership how do we convert basic member to
premium member, an object in C++ can’t changes its
type and client code may have a pointer or reference
this object, so we mustn't do anything that would in
validate data. Thinkingdeeply about problem we
realised there's this property of the member class to
change over time then heritance isn't the right way to
model it, membership type is actually the role
members playing so we decide to have a data
member that holds the membership.

4.3 PIMPL (Pointer to Implementation)

The PIMPL or pointer to implementation idioms
provides a way to hide implementation details of a
class so that the implementations details and
dependencies don't pollute the class interface. This

has number of uses one of which is improving
compilation speed since the compiler doesn't have to
recompile when implementation details changed as
long as the class interface remains the same. Typically
implementation is placed in a separate class with the
main interface class attaining only a pointer to the
implementing class

classPim {
PimImp *Pi;
//…
};
classPimImp {};

4.4 Smart Pointers

Smart pointers provide a way to manage resources
but the concert what the resources is, what
management means is very broad then out very
widely used in cplusplus you rarely see wrote pointers
in modern c plus plus code, aclasses that implement a
smart pointer overload the arrow or crows foot
operator giving indirect access to an internal point of
that it manages. Simple model of the code how its
implemented given below.

Class Ptr<T>{
T* p:
public:
//….
T* operator ->() const{
return p:
}
};

4.5 CRTP (Curiously Recurring Template Pattern)

The CRTP the Curiously Recurring Template
Patternprovides a way to implement static
polymorphism and remove the need for Virtual
functions it does this by finding a templated base class
that uses a derived class as its template parameter, it
also generator a considerable small amount of
assembly code as compared to the virtual functions
dose during polymorphism, as shown below in the
below.

class B<T>{ };

class D: public B<D> { };

4.6 Singleton

Singleton is used when only one instance of the class
is required by adhering truly object oriented fashion.
The Singleton Pattern comes under that classification
of Creational Pattern, which deals with the best ways
to create objects. These are used where only one

 Saqib Mamoon, et.al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved. Pa
ge

10
6

instance of an object is needed throughout the
lifetime of an application. The Singleton class is
instantiated at the time of first access and same
instance is used thereafter till the application quits.

class Singleton
{
private:
static Singleton* instance;
public:
static Singleton* getInstance();
};

5. Modern Features in C++

Let briefly discuss the version of C++, then see what
they added to the language. Although C++ is been
around for about some time, the first release was in
1998, this defined why we called this thing as
traditional C++,[6] which included classes and
templates. In 2003 a minor update, mostly
considering the bug fixes, and this was followed by
the major development program, which took 8 years
and added a large number of significant new features
to the language, we will be looking at these and how
they affect the way we write code. Now the standard
committee set schedule for release every 3 years,
that’s why we saw the release of C++ 14, this mainly
provided the bug fixes and improvements. So 3 year
release cycle which means we see the new release in
2017.

Let’s run through the new features that’s were
introduced by the C++ 11 standard, we see that they
have significantly updated the language.

a. Constructors: Two changes were made the way in
whichobjects are constructed, delegating constructor
like one constructor call another, while inheriting
constructor let the derived class initialize itself using
constructors form the base class. Both these can help
reduce code duplication.
b. Members: Two keywords have been added to
control how class member’s functions are handled.
The default keywords tell the compiler to generate
the default implementations, such as default copy
constructors. The Delete keyword tells the compiler
not to generate the default version and now provide
the more efficient and better documented way to
inhibit the default creation and copy.
c. Initialization: There are major changes in the area
of initialization, Uniform initialization means just
about any data structure can be initialization using
the same syntax. For example a vector can be
initialized as the same way as array. This also apply to
object construction so the same initialization can be
used when calling object constructor.

d. R values: The area of Rvalues has perhaps a
greatest effect on how the developer write in C++.
Particularly who are writing the libraries? C++ now let
you take a reference to a temporaryRvalue which
hasn’t been previously possible. Function overloading
let you distinguished between normal and Rvalue
references and this is very useful because if you know
you are dealing with the temporary you can steal its
state rather than have to copy it, this is called Move
semantics. And has hugely increase the efficiency of
code and standard library.
e. Explicit Keyword: The explicit keyword can now
be applied to conversion operators as well as
constructors and that helps avoid unexpected
conversions.
f. Inference: Type inference is now supported
through the alter keyword, we also have decltype
which deduces the type of the variable or expression,
which can be used to declare a variable that for
example may has same type as x*y, this is particularly
useful in template code, when the types are only
known at the compile time.
g. Lamdas: Lamdas or anonymous functions are
particularly useful addition to C++.not only the made
code more concisely which is easy to understand but
they are are also necessary if one is going to program
in the functional style.
h. Range For: Range for is relatively simple addition
providing a high level way to iterate over collection of
all types, this idea is supported by many languages, it
is also possible to write custom classes that will work
for the range for, which make code more useable and
maintainable because you no longer have to wonder
just how you going to iterate over custom collection.
i. Nullptr: C++ now has a value to represent Null
pointer. This is nullptr which is the proper pointer of
type null pointer T. prior to this developers had to use
either the null macro inherited from c, which is
implementation dependence in assassinating
including header files or zero, which make null pointer
an int, that can cause problems
j. Constexpr: constexpr keyword provides support
for generalized constant expressions, which means
computation at runtime rather than compile time.
k. Static_assert: static assertion is the one that is
checked at the compile time, rather than runtime, this
can be used to get away with type traits which
enables the compilers to check property of types.
These are especially useful when using templates as
they give the developer a control over the types used
to extensiate the templates.
l. Templates: there are two main changes in this
area, veriadic templates are perhaps the most
advanced features introduced by C++ 11 and they
provide a way to construct the templates having

 Saqib Mamoon, et.al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved. Pa
ge

10
7

variable numbers of arguments. Templates aliases
which not only allow to provide aliases for template
types but more usefully to provide aliases with
parameters types already bound.

6. New Libraries Features:

Number of new features have been added to
standard libraries as well.
a. Containers: A number of new containers including
hashtables, tuples, singly-linked lists and fixed arrays,
that last one is interesting because it a refer for built-
in array that allows the arrays to support all the
standard containers operations.
b. Algorithms: A number of new algorithms have
been added as well. Such as ALL OFF, ANY OFF, COPY
IF,MOVE is sorted and various others.
c. Pointers: standard small pointers are been
completely upgraded. Replacing alter pointer which
were never very satisfactory. Std::unique_ptr provides
a single owner of small pointer, while std:shared_ptr
allow shared use, a std::week_ptr holds a reference
but has no concept of owner ship, and that is useful in
scenario such as cashes
d. Functional: Although C++ is not widely known as
functional programming language, but C++ 11 added
new features that make it easier to make it in the
functional programming style. std::function is used to
represent a callable target which can be a function
pointer, function object or lamda and this make it
much simpler to manipulate functions. std::bind
provides a mechanism for partial function application.
Taking a function binding one or more of its
arguments than returning a new function.
e. Concurrency: prior to C++11 all concurrency
functionality were platform dependent making it hard
to write a portable code, but this no longer the case in
C++11.

7. Functional Programming (FP)

In this section we will discuss some unique and
powerful feature of functional programing, before
this, it is important to know about what is FP? Why it
is so important to develop to in C++? It is a type of
programming that focusing on functional execution as
its main computational mechanism. It is a concise and
efficient way to write algorithmic code. And this is the
new style of programming as it introduced many new
patterns. [15] The best thing about functional
programming is, it is supported by functional
language. You can program in a functional style and
one thing C++ make FP much easier. Why we need of
functional programming?
Followings are some reasons why we need functional
programming
• Object oriented is not enough.

• Object oriented is not good at composing
algorithms.
• Object oriented data structure is often slow.
• Object oriented does not handle concurrency.
Principal of function programming:

7.1 Higher order Function

Function as a data, so functions are consider to be
object and passed around and operated on, they can
pass the function as arguments and used them as a
result value. Function that operates on other function
is called higher order functions. Function is used as
building blocks and simple function composed of
larger constructs. Now we have functions as binds in
standard library, std::function &std:: bind, which is
power full and expressive.

7.2 Immutable data

Once object is created, data is not changed, if it is
required to be changed, new object is created.
Mutation may create copy, string in java and C# also
works on it. It has several advantages, first it helps
with concurrency. Because variable is not going to
change, while using it. And reasoning about code,
once you create them you know while this code is for?
If we create a copy every time variable change his
state in that fashion, but that is not necessary is the
case. Let’s consider a simple example

Figure: 5

We have link list and a pointer p, point’s first element,
if we add a new element at head then it is simple,

Figure: 6

New element link to the rest and no copying is
required most importantly, point p is still valid
pointing to the original values, point q , points to the
new sequence.
What if we want to add new element to the tail of the
list then, in this case we have to copy the list, if point
p still going to valid.

 Saqib Mamoon, et.al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved. Pa
ge

10
8

Figure: 7

Although working with data structure, immutable will
efficient and we still understand what’s going on.
7.3 No Side Effect

It means just what we access, execution of the
function does not affect anything else itself. Function
with two integer is classic example for this, giving you
result not changing the arguments, what everything in
the environment function with no side effect are
called pure function, unfortunately exception and I/O
are not pure function. So it is important to write code
with pure core operation and other important
function can be handled.

7.4 Always the same result

Calling the function with same arguments always give
the same result, for example adding 2+2 perfectly
replaced with 4. Consider another expression in more
detail.
a=b+C and d=e+f , both does not contain anything
similar , as a result they can be evaluated in many
orders, further the expression is pure ‘a’ can be used
anywhere else the entire expression is removed, don’t
affecting the rest of the code. Both are independent
than they don’t affect and execution independently.

7.5 Lazy Evaluation

This is another feature of functional programming, it
means don’t evaluate something until you need it, for
example when you want to take square of all the
terms in a list , first it adds one term by other and
then take the square. Lazy evaluation is useful with
chained transmission. Functional programming also
support recursion, which is natural way to show some
algorithms.
Beside in functional programming we have higher
order operation, which we discuss below.

7.6 Filter (Selection)

In this method we select element from sequence
using a predicate, for example

Figure: 8

We apply this operation and get even values from the
sequence. This filter helps to reduce the amount of
data by proceeding different object.

7.7 MAP (Transformation)

In this method we apply some technique on each
element , and resulting new sequence is generated,
for example in a diagram below we see that, when we
apply operation n=>n+2 then it will give us new
sequence , It transforms to a new values.

Figure: 9

7.8 Reduce (Concatenate)

In this method our sequence is reduced to single
value, like in the diagram below we will see its
working
We apply this operation (a,b)=>a+b, and we find this
result.
FP provide us some standard library and operation to
perform filtration, MAP, and reduce operation we see
these function in the given below,
Std::remove copy_if will do for filter
Std::transform does a map
Std::accumalte for reduce Boost. Range and Range
–V3 provides concept for PF.

8. Conclusion

In this paper we have represented the mostly used
Design Patterns and Idioms used in the C++
programming in both object oriented and functional
ways, This papers shows how much improvements
and changes had been made to ease and promote
the reusability, portability, accessibility and
compatibility. We showed addition’s in C++11 and
improvements in C++14, and expecting the great new
features in C++17 according to the standard rules set
by the committee. At the last we also look for
functional programming concepts and how they can
be used in C++. We have gone through the details of

 Saqib Mamoon, et.al., International Journal of Innovative Computer Science & Engineering

© 2017 All Rights Reserved. Pa
ge

10
9

different concepts of FP like filter, MAP and reduce as
well. Experience, continuous practices have made the
C++ to work in a completely new environment.

References

1. E. Casais, “An Object-Oriented System
Implementing KNOs, ”Proceedings of the
Conference on Office Information Systems (COIS),
pp. 284-290, Palo Alto, March 1988.

2. Esterie, P., Falcou, J., Gaunard, M., Lapresté, J. T.,
&Lacassagne, L. (2014). The numerical template
toolbox: A modern C++ design for scientific
computing. Journal of Parallel and Distributed
Computing, 74(12), 3240-3253.

3. Schmidt, D. C., Stal, M., Rohnert, H., &
Buschmann, F. (2013). Pattern-Oriented Software
Architecture, Patterns for Concurrent and
Networked Objects (Vol. 2). John Wiley & Sons.

4. García Sánchez, J. D., & Stroustrup, B. (2015).
Improving performance and maintainability
through refactoring in C++ 11.

5. Aragón, A. M. (2014). A C++ 11 implementation of
arbitrary-rank tensors for high-performance
computing. Computer Physics
Communications, 185(6), 1681-1696.

6. B. Stroustrup, the C++ Programming
Language, Addison-Wesley, Reading, Mass.,
1986.

7. A Pattern Language: Towns, Buildings,
Construction (Center for Environmental Structure)
(17 August 1977) by Christopher Alexander, Sara
Ishikawa, Murray Silverstein

8. H. Albin-Amiot, P. Cointe, Y. G.Gueheneuc, and N.
Jussien. Instantiating and detecting design
patterns: putting bits and pieces together. In 16th
AnnuInternational Conference on Automated
Software Engineering (ASE 2001), pages 26–29,
San Diego, CA, USA, 2001. Ecole des Mines Nantes
France.

9. G. Antoniol, G. Casazza, M. Di Penta, and R.
Fiutem. Object-oriented design patterns
recovery. Journal of Systems and Software,
59(2):181–196, 2001.

10. R.B. France, D.-K. Kim, Sudipto Ghosh, and E.
Song. Auml-based pattern specification
technique. Software Engineering, IEEET
ransactions on, 30(3): 193–206, 2004.

11. Cargill, Tom. Localized Ownership: Managing
Dynamic Objects in C++. Pattern Languages of
Program Design – 2. John M. Vlissides et al., eds.
Reading, MA: Addison-Wesley, 1996

12. Martin, R. Design Patterns for Dealing with Dual
Inheritance Hierarchies in C++.SIGS Publications:
C++ Report, April, 1997.

13. Gamma, E. (1995). Design patterns: Elements Of
Reusable Object-Oriented Software. Pearson
Education India.

14. Orlov, S., & Melnikova, N. (2015). Compound
Object Model for Scalable System Development in
C++. Procedia Computer Science, 66, 651-660.

15. Oliveira, C. (2016). Functional Programming
Techniques. In Options and Derivatives
Programming in C++ (pp. 127-142). Apress.

	1. Introduction
	2. Literature Review
	3. Idioms
	4. Implementation (Modern Patterns and Idioms)
	RAII (Resource Acquisition Is Initialisation)
	STATE
	PIMPL (Pointer to Implementation)
	Smart Pointers
	CRTP (Curiously Recurring Template Pattern)
	Singleton
	6. New Libraries Features:

	7. Functional Programming (FP)
	Higher order Function
	Immutable data
	No Side Effect
	Always the same result
	Lazy Evaluation
	Filter (Selection)
	MAP (Transformation)
	Reduce (Concatenate)

	8. Conclusion

